Enumeration in algebra and geometry

This thesis is devoted to solution of two classes of enumerative problems. The first class is related to enumeration of regions of hyperplane arrangements. We investigate deformations of Coxeter arrangements. In particular, we prove a conjecture of Stanley on the numbers of regions of Linial arrangements. These numbers have several additional combinatorial interpretations in terms of trees, partially ordered sets, and tournaments. We study a more general class of truncated affine arrangements, counting their regions, giving formulas for their Poincare polynomials, and proving a “Riemann hypothesis” on location of zeros of the latter. In addition, we find a couple of new interpretations for the Catalan numbers. The second class of problems comes from enumerative algebraic geometry and Schubert calculus and is related to Gromov-Witten invariants of complex flag manifolds. We present a method for their calculation using a new construction for the quantum cohomology ring of the flag manifold. This construction provides quantum analogues of results of Bernstein, Gelfand, and Gelfand on this subject and of the theory of Schubert polynomials of Lascoux and Schutzenberger. The quantum version of Monk’s formula is established, and a general Pieri-type formula is derived. While being remote from each other at first glance, both these subjects can be attacked with algebraic and combinatorial methods. Thesis Supervisor: Richard P. Stanley Title: Professor of Applied Mathematics

[1]  A. Borel Sur La Cohomologie des Espaces Fibres Principaux et des Espaces Homogenes de Groupes de Lie Compacts , 1953 .

[2]  Israel M. Gelfand,et al.  Combinatorics of hypergeometric functions associated with positive roots , 1997 .

[3]  Y. Ruan,et al.  A mathematical theory of quantum cohomology , 1994 .

[4]  Santhosh K. P. Kumar,et al.  The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Alexander Givental,et al.  Quantum cohomology of flag manifolds and Toda lattices , 1993, hep-th/9312096.

[6]  Jian-yi Shi,et al.  The Kazhdan-Lusztig cells in certain affine Weyl groups , 1986 .

[7]  I. G. MacDonald,et al.  Notes on Schubert polynomials , 1991 .

[8]  Christos A. Athanasiadis,et al.  Algebraic combinatorics of graph spectra, subspace arrangements and Tutte polynomials , 1996 .

[9]  Nicolas Bourbaki,et al.  Groupes et algèbres de Lie , 1971 .

[10]  Patrick Suppes,et al.  Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.

[11]  R. Stanley Hyperplane arrangements, interval orders, and trees. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Kontsevich,et al.  Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994 .

[13]  Jian-yi Shi,et al.  Sign Types Corresponding to an Affine Weyl Group , 1987 .

[14]  H. Whitney A logical expansion in mathematics , 1932 .

[15]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[16]  Ionuct Ciocan-Fontanine Quantum cohomology of flag varieties , 1995 .

[17]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[18]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[19]  B. Kostant Flag manifold quantum cohomology, the toda lattice, and the representation with highest weight ρ , 1996 .

[20]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[21]  Alexander Postnikov Intransitive Trees , 1997, J. Comb. Theory, Ser. A.

[22]  Charles Ehresmann,et al.  Sur la topologie de certains espaces homogènes , 1934 .

[23]  C. Vafa Topological Mirrors and Quantum Rings , 1991 .

[24]  Vladimir I. Arnold The cohomology ring of the colored braid group , 1969 .

[25]  Patrick Headley,et al.  Reduced expressions in infinite Coxeter groups. , 1994 .

[26]  C. Itzykson,et al.  Quantum intersection rings , 1994, hep-th/9412175.

[27]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[28]  Jean-Louis Chandon,et al.  Dénombrement des quasi-ordres sur un ensemble fini , 1978 .

[29]  On equivariant quantum cohomology , 1995, q-alg/9509029.

[30]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[31]  Frank Sottile,et al.  Pieri's formula for flag manifolds and Schubert polynomials , 1996 .

[32]  P. Orlik,et al.  Arrangements Of Hyperplanes , 1992 .

[33]  R. Pandharipande,et al.  Notes on stable maps and quantum cohomology , 1996 .

[34]  John E. Freund,et al.  On the Enumeration of Decision Patterns Involving $n$ Means , 1957 .

[35]  Quantum cohomology of partial flag manifolds $$F_{n_1 } \ldots _{n_k }$$ , 1994, hep-th/9401103.

[36]  Sergey Fomin,et al.  Quantum Schubert polynomials , 1997 .

[37]  R. Winkel On the Multiplication of Schubert Polynomials , 1998 .

[38]  G. Pólya,et al.  Problems and theorems in analysis , 1983 .

[39]  Bumsig Kim Quantum Cohomology of Partial Flag Manifolds and a Residue Formula for Their Intersection Parings , 1994, hep-th/9405056.

[40]  Aaron Bertram Quantum Schubert Calculus , 1994 .