Limitations of Optical 3D Sensors

This chapter is about the physical limitations of optical 3D sensors. The ultimate limit of the measurement uncertainty will be discussed; in other words: “How much 3D information are we able to know?” The dominant sources of noise and how this noise affects the measurement of micro-scale topography will be discussed. Some thoughts on how to overcome these limits will be given. It appears that there are only four types of sensors to be distinguished by the dominant sources of noise and how the physical measurement uncertainty scales with the aperture or working distance. These four types are triangulation, coherence scanning interferometry at rough surfaces, classical interferometry and deflectometry. 3D sensors will be discussed as communication channels and considerations about information-efficient sensors will be addressed.

[1]  Hans J. Tiziani,et al.  One-grating projection for absolute three-dimensional profiling , 2001 .

[2]  H J Tiziani,et al.  Chromatic confocal microscopy with a finite pinhole size. , 2004, Optics letters.

[3]  V. Srinivasan,et al.  Automated phase-measuring profilometry of 3-D diffuse objects. , 1984, Applied optics.

[4]  Werner P. O. Juptner,et al.  High-resolution 3D shape measurement on specular surfaces by fringe reflection , 2004, SPIE Photonics Europe.

[5]  Gerd Häusler,et al.  Physikalische Grenzen der optischen Formerfassung mit Licht , 1997 .

[6]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[7]  Gerd Häusler,et al.  Microdeflectometry--a novel tool to acquire three-dimensional microtopography with nanometer height resolution. , 2007, Optics letters.

[8]  T. Wilson,et al.  Method of obtaining optical sectioning by using structured light in a conventional microscope. , 1997, Optics letters.

[9]  Volker Quetschke Ligo - A look behind attometer (10-18 m) sensitivity and beyond , 2010 .

[10]  François Blais Review of 20 years of range sensor development , 2004, J. Electronic Imaging.

[11]  R. Ritter,et al.  Contribution to analysis of the reflection grating method , 1983 .

[12]  G. Wnek,et al.  Encyclopedia of biomaterials and biomedical engineering , 2008 .

[13]  Peter Ettl,et al.  Roughness parameters and surface deformation measured by coherence radar , 1998, Other Conferences.

[14]  G Häusler,et al.  Acquisition of 3-D data by focus sensing. , 1988, Applied optics.

[15]  Peter Vogt,et al.  "Flying Triangulation": A motion-robust optical 3D sensor principle , 2009 .

[16]  Markus C. Knauer,et al.  3D sensor zoo – Species and natural habitats , 2006 .

[17]  J. Baldwin,et al.  The application of interferometry to optical astronomical imaging , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  Tony Wilson,et al.  Surface profile measurement using the confocal microscope , 1982 .

[19]  S. Lippman,et al.  The Scripps Institution of Oceanography , 1959, Nature.

[20]  G. Häusler,et al.  Laser triangulation: fundamental uncertainty in distance measurement. , 1994, Applied optics.

[21]  M. Kozubek,et al.  Efficient real-time confocal microscopy with white light sources , 1996, Nature.

[22]  G. Pedrini,et al.  Focus-wavelength encoded optical profilometer , 1984 .

[23]  Francois Blais,et al.  Active 3D sensing , 2000 .

[24]  Mumin Song,et al.  Overview of three-dimensional shape measurement using optical methods , 2000 .

[25]  Markus C. Knauer,et al.  Phase measuring deflectometry: a new approach to measure specular free-form surfaces , 2004, SPIE Photonics Europe.

[26]  Fernando Puente León,et al.  Deflectometric Measurement of Specular Surfaces , 2005, 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings.

[27]  K. Fischer-Ausserer,et al.  Active 3D Sensing for Heritage Applications , 2004 .

[28]  Robert D. Guenther,et al.  Encyclopedia of modern optics , 2005 .

[29]  G. Häusler,et al.  Three-dimensional sensing of rough surfaces by coherence radar. , 1992, Applied optics.

[30]  Paul J. Besl,et al.  Active, optical range imaging sensors , 1988, Machine Vision and Applications.

[31]  G. Häusler,et al.  Limits of Optical Range Sensors and How to Exploit Them , 1999 .

[32]  Gerd Haeusler Fundamental limits of three-dimensional sensing (or: nature makes no presents) , 1990, Other Conferences.

[33]  G Häusler,et al.  Range sensing by shearing interferometry: influence of speckle. , 1988, Applied optics.

[34]  Gerd Häusler,et al.  Information Efficient White-Light Interferometry , 2008 .

[35]  M. Rioux,et al.  Influence of speckle on laser range finders. , 1991, Applied optics.

[36]  Svenja Ettl,et al.  Shape reconstruction from gradient data. , 2007, Applied optics.

[37]  K. Oparka,et al.  Super-Resolution Imaging of Plasmodesmata Using Three-Dimensional Structured Illumination Microscopy1[W] , 2010, Plant Physiology.

[38]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[39]  Richard K. Leach,et al.  The measurement of rough surface topography using coherence scanning interferometry. , 2010 .