Macroscopic Quantum Models With and Without Collisions

Recent progress on the derivation of macroscopic quantum models is reviewed. The first part of the survey is concerned with collisionless models, namely quantum hydrodynamic equations. These models are derived from the mixed-state Schrödinger system or from the Wigner equation. In the second part, starting from a Wigner-Boltzmann-type equation, quantum diffusion models like the viscous quantum hydrodynamic and the quantum drift-diffusion equations are derived. For these quantum diffusion models, new numerical results for a simple resonant tunneling diode are presented. Moreover, some hybrid macroscopicmicroscopic models are reviewed.

[1]  María J. Cáceres,et al.  Long-time behavior for a nonlinear fourth-order parabolic equation , 2004 .

[2]  P. Markowich,et al.  Mathematical problems in semiconductor physics , 1995 .

[3]  David K. Ferry,et al.  Self-Scattering Path-Variable Formulation of High-Field, Time-Dependent, Quantum Kinetic Equations for Semiconductor Transport in the Finite-Collision-Duration Regime , 1979 .

[4]  Hans-Christoph Kaiser,et al.  A QUANTUM TRANSMITTING SCHRÖDINGER–POISSON SYSTEM , 2004 .

[5]  M. I. Loffredo,et al.  On the creation of quantized vortex lines in rotating He II , 1993 .

[6]  G. V. Chester,et al.  Solid State Physics , 2000 .

[7]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[8]  L. Brillouin,et al.  La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives , 1926 .

[9]  Giorgio Baccarani,et al.  Process and device modeling for microelectronics , 1993 .

[10]  Morozov,et al.  Zubarev's method of a nonequilibrium statistical operator and some challenges in the theory of irreversible processes , 1998 .

[11]  A. Jüngel,et al.  A quantum regularization of the one-dimensional hydrodynamic model for semiconductors , 2000, Advances in Differential Equations.

[12]  H. Grubin,et al.  Modeling of Quantum Transport in Semiconductor Devices , 1994 .

[13]  Christian A. Ringhofer,et al.  Approximation of Thermal Equilibrium for Quantum Gases with Discontinuous Potentials and Application to Semiconductor Devices , 1998, SIAM J. Appl. Math..

[14]  Zhou,et al.  Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. , 1993, Physical review. B, Condensed matter.

[15]  Ingenuin Gasser,et al.  Closure conditions for classical and quantum moment hierarchies in the small-temperature limit , 1996 .

[16]  Florian Méhats,et al.  Numerical approximation of a quantum drift-diffusion model , 2004 .

[17]  C. D. Levermore,et al.  Moment closure hierarchies for kinetic theories , 1996 .

[18]  Pierre Degond,et al.  Quantum Hydrodynamic models derived from the entropy principle , 2003 .

[19]  Shaoqiang Tang,et al.  Numerical approximation of the viscous quantum hydrodynamic model for semiconductors , 2006 .

[20]  W. Fichtner,et al.  Quantum device-simulation with the density-gradient model on unstructured grids , 2001 .

[21]  Ansgar Jüngel,et al.  Quasi-hydrodynamic Semiconductor Equations , 2001 .

[22]  P. Markowich,et al.  Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .

[23]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[24]  Ansgar Jüngel,et al.  Convergent semidiscretization of a nonlinear fourth order parabolic system , 2003 .

[25]  Andrew R. Brown,et al.  Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: a 3-D density-gradient simulation study , 2001 .

[26]  M. G. Ancona DIFFUSION‐DRIFT MODELING OF STRONG INVERSION LAYERS , 1987 .

[27]  Lebowitz,et al.  Fluctuations of a stationary nonequilibrium interface. , 1991, Physical review letters.

[28]  A. Jüngel,et al.  Local existence of solutions to the transient quantum hydrodynamic equations , 2002 .

[29]  A. Jüngel,et al.  Analysis of the viscous quantum hydrodynamic equations for semiconductors , 2004, European Journal of Applied Mathematics.

[30]  R. A. SMITH,et al.  Physics of Semiconductors , 1960, Nature.

[31]  Ansgar Jüngel,et al.  The relaxation-time limit in the quantum hydrodynamic equations for semiconductors , 2006 .

[32]  A. Jüngel,et al.  Positive Solutions to Singular Second and Third Order Differential Equations for Quantum Fluids , 2001 .

[33]  Christian A. Ringhofer,et al.  A Wignerfunction Approach to Phonon Scattering , 1999, VLSI Design.

[34]  William R. Frensley,et al.  Boundary conditions for open quantum systems driven far from equilibrium , 1990 .

[35]  Bernardo Cockburn,et al.  Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode at 300 K , 1995, Journal of Computational Electronics.

[36]  C. Schütte,et al.  Quantum‐classical molecular dynamics as an approximation to full quantum dynamics , 1996 .

[37]  Pierre Degond,et al.  A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations , 2002 .

[38]  R. Dutton,et al.  Density-gradient simulations of quantum effects in ultra-thin-oxide MOS structures , 1997, SISPAD '97. 1997 International Conference on Simulation of Semiconductor Processes and Devices. Technical Digest.

[39]  P. Marcati,et al.  Existence and Asymptotic Behavior of Multi-Dimensional Quantum Hydrodynamic Model for Semiconductors , 2004 .

[40]  A. Wettstein Quantum effects in MOS devices , 2000 .

[41]  Ansgar Jüngel,et al.  Positive Entropic Schemes for a Nonlinear Fourth-order Parabolic Equation , 2002 .

[42]  Can the Density Gradient Approach Describe the Source-Drain Tunnelling in Decanano Double-Gate MOSFETs? , 2002 .

[43]  Mario G. Ancona Finite-Difference Schemes for the Density-Gradient Equations , 2002 .

[44]  Naoufel Ben Abdallah,et al.  A Hybrid Kinetic-Quantum Model for Stationary Electron Transport , 1998 .

[45]  P. Argyres Quantum kinetic equations for electrons in high electric and phonon fields , 1992 .

[46]  Pierre Degond,et al.  Binary quantum collision operators conserving mass momentum and energy , 2003 .

[47]  J. Descloux,et al.  SIMULATION OF SOME QUANTUM MODELS FOR SEMICONDUCTORS , 2002 .

[48]  Ansgar Jüngel,et al.  A Nonlinear Fourth-order Parabolic Equation with Nonhomogeneous Boundary Conditions , 2006, SIAM J. Math. Anal..

[49]  M. Czubak,et al.  PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.

[50]  Gregor Wentzel,et al.  Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik , 1926 .

[51]  Pavel Bleher,et al.  Existence and positivity of solutions of a fourth‐order nonlinear PDE describing interface fluctuations , 1994 .

[52]  Ansgar Jüngel,et al.  A Positivity-Preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System , 2001, SIAM J. Numer. Anal..

[53]  H. L. Grubin,et al.  Quantum moment balance equations and resonant tunnelling structures , 1989 .

[54]  Andrea L. Lacaita,et al.  Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .

[55]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[56]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[57]  Carl L. Gardner,et al.  The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..

[58]  H. A. Kramers,et al.  Wellenmechanik und halbzahlige Quantisierung , 1926 .

[59]  W. T. Wenckebach Essentials of Semiconductor Physics , 1999 .

[60]  Christian A. Ringhofer,et al.  The Chapman-Enskog Expansion and the Quantum Hydrodynamic Model for Semiconductor Devices , 2000, VLSI Design.

[61]  Stefano Micheletti,et al.  Numerical Simulation of Resonant Tunneling Diodes with a Quantum-Drift-Diffusion Model , 2004 .

[62]  Zhangxin Chen A finite element method for the quantum hydrodynamic model for semiconductor devices , 1996 .

[63]  Quantum hydrodynamic models for the two-band Kane system , 2006 .

[64]  Paola Pietra,et al.  Weak Limits of the Quantum Hydrodynamic Model , 1999, VLSI Design.

[65]  Gardner,et al.  Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  Bryan A. Biegel,et al.  Quantum electronic device simulation , 1997 .

[67]  G. Vojta,et al.  Statistical Mechanics of Nonequilibrium Processes , 1998 .

[68]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[69]  Pierre Degond,et al.  Quantum Moment Hydrodynamics and the Entropy Principle , 2003 .

[70]  Bo Zhang,et al.  On a steady-state quantum hydrodynamic model for semiconductors , 1996 .

[71]  Andreas Unterreiter,et al.  The Stationary Current { VoltageCharacteristics of the Quantum DriftDi usion ModelRen , 1999 .

[72]  H. Tsuchiya,et al.  Quantum Transport Modeling of Ultrasmall Semiconductor Devices (Special Issue on TCAD for Semiconductor Industries) , 1999 .

[73]  Pierre Degond,et al.  A 1D coupled Schrödinger drift-diffusion model including collisions , 2005 .

[74]  A. Unterreiter,et al.  On the stationary quantum drift-diffusion model , 1998 .

[75]  Ansgar Jüngel,et al.  Exponential decay in time of solutions of the viscous quantum hydrodynamic equations , 2003, Appl. Math. Lett..

[76]  Ansgar Jüngel,et al.  Global Nonnegative Solutions of a Nonlinear Fourth-Order Parabolic Equation for Quantum Systems , 2000, SIAM J. Math. Anal..

[77]  A. Jüngel,et al.  ASYMPTOTIC LIMITS FOR QUANTUM TRAJECTORY MODELS , 2002 .

[78]  Zhiping Yu,et al.  Circuit/device modeling at the quantum level , 1998, 1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116).

[79]  L. Erdős,et al.  Fokker–Planck Equations as Scaling Limits of Reversible Quantum Systems , 2000 .

[80]  A. Jüngel,et al.  Quantum Euler-Poisson systems: global existence and exponential decay , 2004 .

[81]  ASMA EL AYYADI SEMICONDUCTOR SIMULATIONS USING A COUPLED QUANTUM DRIFT-DIFFUSION SCHRÖDINGER-POISSON MODEL , 2004 .

[82]  I. Gentil,et al.  A nonlinear fourth-order parabolic equation and related logarithmic Sobolev inequalities , 2004 .

[83]  Juan Soler,et al.  An Analysis of Quantum Fokker-Planck Models: A Wigner Function Approach , 2004 .

[84]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.