Macroscopic Quantum Models With and Without Collisions
暂无分享,去创建一个
[1] María J. Cáceres,et al. Long-time behavior for a nonlinear fourth-order parabolic equation , 2004 .
[2] P. Markowich,et al. Mathematical problems in semiconductor physics , 1995 .
[3] David K. Ferry,et al. Self-Scattering Path-Variable Formulation of High-Field, Time-Dependent, Quantum Kinetic Equations for Semiconductor Transport in the Finite-Collision-Duration Regime , 1979 .
[4] Hans-Christoph Kaiser,et al. A QUANTUM TRANSMITTING SCHRÖDINGER–POISSON SYSTEM , 2004 .
[5] M. I. Loffredo,et al. On the creation of quantized vortex lines in rotating He II , 1993 .
[6] G. V. Chester,et al. Solid State Physics , 2000 .
[7] E. Madelung,et al. Quantentheorie in hydrodynamischer Form , 1927 .
[8] L. Brillouin,et al. La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives , 1926 .
[9] Giorgio Baccarani,et al. Process and device modeling for microelectronics , 1993 .
[10] Morozov,et al. Zubarev's method of a nonequilibrium statistical operator and some challenges in the theory of irreversible processes , 1998 .
[11] A. Jüngel,et al. A quantum regularization of the one-dimensional hydrodynamic model for semiconductors , 2000, Advances in Differential Equations.
[12] H. Grubin,et al. Modeling of Quantum Transport in Semiconductor Devices , 1994 .
[13] Christian A. Ringhofer,et al. Approximation of Thermal Equilibrium for Quantum Gases with Discontinuous Potentials and Application to Semiconductor Devices , 1998, SIAM J. Appl. Math..
[14] Zhou,et al. Form of the quantum potential for use in hydrodynamic equations for semiconductor device modeling. , 1993, Physical review. B, Condensed matter.
[15] Ingenuin Gasser,et al. Closure conditions for classical and quantum moment hierarchies in the small-temperature limit , 1996 .
[16] Florian Méhats,et al. Numerical approximation of a quantum drift-diffusion model , 2004 .
[17] C. D. Levermore,et al. Moment closure hierarchies for kinetic theories , 1996 .
[18] Pierre Degond,et al. Quantum Hydrodynamic models derived from the entropy principle , 2003 .
[19] Shaoqiang Tang,et al. Numerical approximation of the viscous quantum hydrodynamic model for semiconductors , 2006 .
[20] W. Fichtner,et al. Quantum device-simulation with the density-gradient model on unstructured grids , 2001 .
[21] Ansgar Jüngel,et al. Quasi-hydrodynamic Semiconductor Equations , 2001 .
[22] P. Markowich,et al. Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .
[23] J. Mayer,et al. On the Quantum Correction for Thermodynamic Equilibrium , 1947 .
[24] Ansgar Jüngel,et al. Convergent semidiscretization of a nonlinear fourth order parabolic system , 2003 .
[25] Andrew R. Brown,et al. Increase in the random dopant induced threshold fluctuations and lowering in sub-100 nm MOSFETs due to quantum effects: a 3-D density-gradient simulation study , 2001 .
[26] M. G. Ancona. DIFFUSION‐DRIFT MODELING OF STRONG INVERSION LAYERS , 1987 .
[27] Lebowitz,et al. Fluctuations of a stationary nonequilibrium interface. , 1991, Physical review letters.
[28] A. Jüngel,et al. Local existence of solutions to the transient quantum hydrodynamic equations , 2002 .
[29] A. Jüngel,et al. Analysis of the viscous quantum hydrodynamic equations for semiconductors , 2004, European Journal of Applied Mathematics.
[30] R. A. SMITH,et al. Physics of Semiconductors , 1960, Nature.
[31] Ansgar Jüngel,et al. The relaxation-time limit in the quantum hydrodynamic equations for semiconductors , 2006 .
[32] A. Jüngel,et al. Positive Solutions to Singular Second and Third Order Differential Equations for Quantum Fluids , 2001 .
[33] Christian A. Ringhofer,et al. A Wignerfunction Approach to Phonon Scattering , 1999, VLSI Design.
[34] William R. Frensley,et al. Boundary conditions for open quantum systems driven far from equilibrium , 1990 .
[35] Bernardo Cockburn,et al. Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode at 300 K , 1995, Journal of Computational Electronics.
[36] C. Schütte,et al. Quantum‐classical molecular dynamics as an approximation to full quantum dynamics , 1996 .
[37] Pierre Degond,et al. A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations , 2002 .
[38] R. Dutton,et al. Density-gradient simulations of quantum effects in ultra-thin-oxide MOS structures , 1997, SISPAD '97. 1997 International Conference on Simulation of Semiconductor Processes and Devices. Technical Digest.
[39] P. Marcati,et al. Existence and Asymptotic Behavior of Multi-Dimensional Quantum Hydrodynamic Model for Semiconductors , 2004 .
[40] A. Wettstein. Quantum effects in MOS devices , 2000 .
[41] Ansgar Jüngel,et al. Positive Entropic Schemes for a Nonlinear Fourth-order Parabolic Equation , 2002 .
[42] Can the Density Gradient Approach Describe the Source-Drain Tunnelling in Decanano Double-Gate MOSFETs? , 2002 .
[43] Mario G. Ancona. Finite-Difference Schemes for the Density-Gradient Equations , 2002 .
[44] Naoufel Ben Abdallah,et al. A Hybrid Kinetic-Quantum Model for Stationary Electron Transport , 1998 .
[45] P. Argyres. Quantum kinetic equations for electrons in high electric and phonon fields , 1992 .
[46] Pierre Degond,et al. Binary quantum collision operators conserving mass momentum and energy , 2003 .
[47] J. Descloux,et al. SIMULATION OF SOME QUANTUM MODELS FOR SEMICONDUCTORS , 2002 .
[48] Ansgar Jüngel,et al. A Nonlinear Fourth-order Parabolic Equation with Nonhomogeneous Boundary Conditions , 2006, SIAM J. Math. Anal..
[49] M. Czubak,et al. PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.
[50] Gregor Wentzel,et al. Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik , 1926 .
[51] Pavel Bleher,et al. Existence and positivity of solutions of a fourth‐order nonlinear PDE describing interface fluctuations , 1994 .
[52] Ansgar Jüngel,et al. A Positivity-Preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System , 2001, SIAM J. Numer. Anal..
[53] H. L. Grubin,et al. Quantum moment balance equations and resonant tunnelling structures , 1989 .
[54] Andrea L. Lacaita,et al. Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .
[55] A. Leggett,et al. Path integral approach to quantum Brownian motion , 1983 .
[56] P. Bhatnagar,et al. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .
[57] Carl L. Gardner,et al. The Quantum Hydrodynamic Model for Semiconductor Devices , 1994, SIAM J. Appl. Math..
[58] H. A. Kramers,et al. Wellenmechanik und halbzahlige Quantisierung , 1926 .
[59] W. T. Wenckebach. Essentials of Semiconductor Physics , 1999 .
[60] Christian A. Ringhofer,et al. The Chapman-Enskog Expansion and the Quantum Hydrodynamic Model for Semiconductor Devices , 2000, VLSI Design.
[61] Stefano Micheletti,et al. Numerical Simulation of Resonant Tunneling Diodes with a Quantum-Drift-Diffusion Model , 2004 .
[62] Zhangxin Chen. A finite element method for the quantum hydrodynamic model for semiconductor devices , 1996 .
[63] Quantum hydrodynamic models for the two-band Kane system , 2006 .
[64] Paola Pietra,et al. Weak Limits of the Quantum Hydrodynamic Model , 1999, VLSI Design.
[65] Gardner,et al. Smooth quantum potential for the hydrodynamic model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[66] Bryan A. Biegel,et al. Quantum electronic device simulation , 1997 .
[67] G. Vojta,et al. Statistical Mechanics of Nonequilibrium Processes , 1998 .
[68] C. Schmeiser,et al. Semiconductor equations , 1990 .
[69] Pierre Degond,et al. Quantum Moment Hydrodynamics and the Entropy Principle , 2003 .
[70] Bo Zhang,et al. On a steady-state quantum hydrodynamic model for semiconductors , 1996 .
[71] Andreas Unterreiter,et al. The Stationary Current { VoltageCharacteristics of the Quantum DriftDi usion ModelRen , 1999 .
[72] H. Tsuchiya,et al. Quantum Transport Modeling of Ultrasmall Semiconductor Devices (Special Issue on TCAD for Semiconductor Industries) , 1999 .
[73] Pierre Degond,et al. A 1D coupled Schrödinger drift-diffusion model including collisions , 2005 .
[74] A. Unterreiter,et al. On the stationary quantum drift-diffusion model , 1998 .
[75] Ansgar Jüngel,et al. Exponential decay in time of solutions of the viscous quantum hydrodynamic equations , 2003, Appl. Math. Lett..
[76] Ansgar Jüngel,et al. Global Nonnegative Solutions of a Nonlinear Fourth-Order Parabolic Equation for Quantum Systems , 2000, SIAM J. Math. Anal..
[77] A. Jüngel,et al. ASYMPTOTIC LIMITS FOR QUANTUM TRAJECTORY MODELS , 2002 .
[78] Zhiping Yu,et al. Circuit/device modeling at the quantum level , 1998, 1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116).
[79] L. Erdős,et al. Fokker–Planck Equations as Scaling Limits of Reversible Quantum Systems , 2000 .
[80] A. Jüngel,et al. Quantum Euler-Poisson systems: global existence and exponential decay , 2004 .
[81] ASMA EL AYYADI. SEMICONDUCTOR SIMULATIONS USING A COUPLED QUANTUM DRIFT-DIFFUSION SCHRÖDINGER-POISSON MODEL , 2004 .
[82] I. Gentil,et al. A nonlinear fourth-order parabolic equation and related logarithmic Sobolev inequalities , 2004 .
[83] Juan Soler,et al. An Analysis of Quantum Fokker-Planck Models: A Wigner Function Approach , 2004 .
[84] G. Iafrate,et al. Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.