Image-based exploration obstacle avoidance for mobile robot

Obstacle avoidance is a key component of autonomous systems. In particular, when dealing with large robots in unmodified environments, robust obstacle avoidance is vital. This paper presents a new image-based exploration algorithm for a mobile robot equipped only with a monocular pan-tilt camera to autonomously explore the natural scene structure in indoor environments. The algorithm inferred and computed the frontier information directly from the segmentation images and classified each super-pixel as belong either to an obstacle or the ground plane. The method used the distance and orientation information of the frontier to control the robot to avoid collisions. Experimental results on a mobile robot in an unmodified laboratory and corridor environments demonstrate the validity of the approach.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Massimo Bertozzi,et al.  A stereo vision system for real-time automotive obstacle detection , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[3]  Yoram Koren,et al.  Obstacle avoidance with ultrasonic sensors , 1988, IEEE J. Robotics Autom..

[4]  Joachim Hertzberg,et al.  An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments , 2003, Robotics Auton. Syst..

[5]  R. Danescu,et al.  High accuracy stereo vision system for far distance obstacle detection , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[6]  Illah R. Nourbakhsh,et al.  Appearance-Based Obstacle Detection with Monocular Color Vision , 2000, AAAI/IAAI.

[7]  Joachim Hertzberg,et al.  A 3D laser range finder for autonomous mobile robots , 2001 .

[8]  Alexei A. Efros,et al.  Recovering Surface Layout from an Image , 2007, International Journal of Computer Vision.

[9]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[10]  Manuela M. Veloso,et al.  Visual sonar: fast obstacle avoidance using monocular vision , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[11]  Dario Floreano,et al.  Toward 30-gram Autonomous Indoor Aircraft: Vision-based Obstacle Avoidance and Altitude Control , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[12]  Alexei A. Efros,et al.  Automatic photo pop-up , 2005, SIGGRAPH 2005.

[13]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[15]  Jian Sun,et al.  Lazy snapping , 2004, SIGGRAPH 2004.

[16]  Ze-Nian Li,et al.  A survey of motion-parallax-based 3-D reconstruction algorithms , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[17]  R. Tibshirani,et al.  Additive Logistic Regression : a Statistical View ofBoostingJerome , 1998 .

[18]  Hai Tao,et al.  A global matching framework for stereo computation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[19]  Sridhar Lakshmanan,et al.  An algorithm for detecting roads and obstacles in radar images , 2001, IEEE Trans. Veh. Technol..

[20]  C. V. Jawahar,et al.  Vision based navigation for mobile robots in indoor environment by teaching and playing-back scheme , 2001 .

[21]  Yoram Singer,et al.  Logistic Regression, AdaBoost and Bregman Distances , 2000, Machine Learning.