Electrodynamic Tether Applications and Constraints

Propulsion and power generation by bare electrodynamic tethers are revisited in a unified way and issues and constraints are addressed. In comparing electrodynamic tethers, which do not use propellant, with other propellantconsuming systems, mission duration is a discriminator that defines crossover points for systems with equal initial masses. Bare tethers operating in low Earth orbit can be more competitive than optimum ion thrusters in missions exceeding two-three days for orbital deboost and three weeks for boosting operations. If the tether produces useful onboard power during deboost, the crossover point reaches to about 10 days. Power generation by means of a bare electrodynamic tether in combination with chemical propulsion to maintain orbital altitude of the system is more efficient than use of the same chemicals (liquid hydrogen and liquid oxygen) in a fuel cell to produce power for missions longer than one week. Issues associated with tether temperature, bowing, deployment, and arcing are also discussed. Heating/cooling rates reach about 4 K/s for a 0.05-mm-thick tape and a fraction of Kelvin/second for the ProSEDS (0.6-mm-radius) wire; under dominant ohmic effects, temperatures areover200K (night) and 380 K (day) for the tape and 320 and 415 K for that wire. Tether applications other than propulsion and power are briefly discussed.

[1]  Phillip D. Anz-Meador Tether-debris interactions in low Earth orbit , 2001 .

[2]  Jean-Pierre Lebreton,et al.  Current‐voltage characteristic of the TSS‐1R satellite: Comparison with isotropic and anisotropic models , 1998 .

[3]  J. Deux Kinetic modeling of electrodynamic space tethers , 2005 .

[4]  Susan I. Koss Tether Deployment Mechanism for the Advanced Tether Experiment (ATEx) , 1997 .

[5]  D. Hastings,et al.  Spacecraft–Environment Interactions: Index , 1996 .

[6]  Peter M. Bainum,et al.  Optimal control of the Shuttle-Tethered-Subsatellite system , 1980 .

[7]  Les Johnson,et al.  Propulsive Small Expendable Deployer System Experiment , 2000 .

[8]  J. Winter,et al.  The AFRL demonstration and science experiments (DSX) for DoD space capability in the MEO , 2006, 2006 IEEE Aerospace Conference.

[9]  E. C. Lorenzini,et al.  Spherical Collectors Versus Bare Tethers for Drag, Thrust, and Power Generation , 2006 .

[10]  Manuel Martinez-Sanchez,et al.  Electron Collection by a Tether at High potential in a Magnetized Plasma , 2003 .

[11]  C. C. Rupp,et al.  Control and flight performance of tethered satellite small expendable deployment system-II , 1996 .

[12]  Pekka Janhunen,et al.  Electric Sail for Spacecraft Propulsion , 2004 .

[13]  V. V. Beletskii,et al.  Dynamics of the orbital cable system , 1983 .

[14]  Hironori A. Fujii,et al.  Deployment/Retrieval Control of Tethered Subsatellite Through an Optimal Path , 1994 .

[15]  Richard M. Thorne,et al.  Electron scattering loss in Earth's inner magnetosphere: 1. Dominant physical processes , 1998 .

[16]  Eberhard Gill,et al.  First Mission Results of the YES2 Tethered SpaceMail Experiment , 2008 .

[17]  Paul J. Wilbur,et al.  Ground-based tests of hollow cathode plasma contactors , 1989 .

[18]  Benjamin B. Donahue,et al.  Practicality of using a Tether for electrodynamic reboost of the International Space Station , 2001 .

[19]  J. G. Laframboise Current collection by a positively charged spacecraft: Effects of its magnetic presheath , 1997 .

[20]  R. D. Estes,et al.  Performance of Bare-Tether Systems Under Varying Magnetic and Plasma Conditions , 2000 .

[21]  E. C. Lorenzini,et al.  A New Kind of Dynamic Instability in Electrodynamic Tethers , 2000 .

[22]  G. Khazanov,et al.  Tether‐induced airglow: Collisionless effects , 2006 .

[23]  Joseph Carroll,et al.  SEDS deployer design and flight performance , 1993 .

[24]  M. Martínez-Sánchez,et al.  Bare-Tether Sheath and Current: Comparison of Asymptotic Theory and Kinetic Simulations in Stationary Plasma , 2008, IEEE Transactions on Plasma Science.

[25]  Enrico C. Lorenzini,et al.  Bare Tethers for Electrodynamic Spacecraft Propulsion , 2000 .

[26]  Enrico C. Lorenzini,et al.  In-orbit experimentation with the Small Expendable-Tether Deployment System , 1990 .

[27]  Eduardo Ahedo,et al.  Bare wire anodes for electrodynamic tethers , 1993 .

[28]  Mengu Cho,et al.  Ground Experiments and Computer Simulations of Interaction Between Bare Tether and Plasma , 2008, IEEE Transactions on Plasma Science.

[29]  R. D. Estes,et al.  The orbital-motion-limited regime of cylindrical Langmuir probes , 1999 .

[30]  Henry B. Garrett,et al.  Charged particle distributions in Jupiter's magnetosphere , 1983 .

[31]  Ira Katz,et al.  Ionization-induced instability in an electron-collecting sheath , 1988 .

[32]  R. Hoyt,et al.  Remediation of radiation belts using electrostatic tether structures , 2005, 2005 IEEE Aerospace Conference.

[33]  Jean-Pierre Lebreton,et al.  Sounding rocket experiment of bare electrodynamic tether system , 2009 .

[34]  Sanmartín Losada,et al.  Physics and applications of electrodynamic space tethers , 2004 .

[35]  G. Sánchez-Arriaga,et al.  Magnetic pumping of whistler waves by tether current modulation , 2010 .

[36]  R. D. Estes,et al.  Cylindrical Langmuir probes beyond the orbital-motion-limited regime , 2000 .

[37]  M. Martínez-Sánchez,et al.  Artificial auroral effects from a bare conducting tether , 1997 .

[38]  Christopher F Zeineh Applications of an electrostatic high-voltage tether to radiation belt remediation , 2005 .

[39]  Joseph A. Carroll Tether applications in space transportation , 1986 .

[40]  R. Thorne,et al.  Electron scattering loss in Earth's inner magnetosphere: 2. Sensitivity to model parameters , 1998 .

[41]  L. W. Parker,et al.  Probe design for orbit‐limited current collection , 1973 .

[42]  Ira Katz,et al.  TSS‐1R electron currents: Magnetic limited collection from a heated presheath , 1998 .

[43]  M. Martinez-Sanchez,et al.  Floating bare tether as upper atmosphere probe , 2006 .

[44]  T. Bell,et al.  Controlled precipitation of radiation belt electrons , 2003 .

[45]  R. D. Estes,et al.  Interference of parallel cylindrical Langmuir probes , 2001 .

[46]  Enrico C. Lorenzini,et al.  Dynamics of a Dual-Probe Tethered System , 1997 .

[47]  Eduardo Ahedo,et al.  Analysis of Bare-Tether Systems for Deorbiting Low-Earth-Orbit Satellites , 2002 .

[48]  M. Liemohn,et al.  Current‐produced magnetic field effects on current collection , 2000 .

[49]  J. Albert Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma , 2003 .

[50]  Claudio Bombardelli,et al.  Space Tethers as Testbeds for Spacecraft Formation Flying , 2004 .

[51]  E. Lorenzini,et al.  Role of Superconducting Shields in Electrodynamic Propulsion , 2008 .

[52]  J. Donoso,et al.  The radiation impedance of electrodynamic tethers in a polar Jovian orbit , 2010 .

[53]  Claudio Bombardelli,et al.  Asymptotic Solution for the Current Profile of Passive Bare Electrodynamic Tethers , 2010 .

[54]  Robert D. Estes,et al.  Magnetic self‐field effects on current collection by an ionospheric bare tether , 2002 .

[55]  R. Strangeway On the instability of a spatially confined electron beam in a magnetized plasma , 1980, Journal of Plasma Physics.

[57]  John D. Williams,et al.  Electron emission from a hollow cathode-based plasma contactor , 1992 .

[58]  Pekka Janhunen,et al.  Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion , 2007 .

[59]  C. Bombardelli,et al.  Electrodynamic Tether at Jupiter—II: Fast Moon Tour After Capture , 2009, IEEE Transactions on Plasma Science.

[60]  Sven G. Bilen,et al.  Analysis of chamber simulations of long collecting probes in high-speed dense plasmas , 2002 .

[61]  Keith R Fuhrhop,et al.  Experimental investigation of electron collection to solid and slotted tape probes in a high-speed flowing plasma , 2005, IEEE Transactions on Plasma Science.

[62]  Paul Williams,et al.  Optimal deployment/retrieval of a tethered formation spinning in the orbital plane , 2006 .

[65]  P. Wilbur,et al.  Plasma contactor design for electrodynamic tether applications , 1988 .

[66]  I. Katz,et al.  The plasma environment of the International Space Station in the austral summer auroral zone inferred from plasma contactor data , 2002 .

[67]  É. Choinière,et al.  Self-Consistent 2-D Kinetic Simulations of High-Voltage Plasma Sheaths Surrounding Ion-Attracting Conductive Cylinders in Flowing Plasmas , 2007, IEEE Transactions on Plasma Science.

[68]  Enrico C. Lorenzini,et al.  Exploration of outer planets using tethers for power and propulsion , 2005 .

[69]  Enrico C. Lorenzini,et al.  Efficiency of Electrodynamic Tether Thrusters , 2006 .

[70]  C. Bombardelli,et al.  Electrodynamic Tether at Jupiter—I: Capture Operation and Constraints , 2008, IEEE Transactions on Plasma Science.

[71]  H. Garrett,et al.  A Proposed Two-Stage Two-Tether Scientific Mission at Jupiter , 2012, IEEE Transactions on Plasma Science.

[72]  R. J. Gamble,et al.  Radiation belt electron precipitation due to VLF transmitters: Satellite observations , 2008 .

[73]  Juan Ramón Sanmartín Losada,et al.  PIC computation of electron current collection to a moving bare tether in the mesothermal condition , 2001 .

[74]  Vladimir Mirnov,et al.  High-Voltage Satellite Tethers for Active Experiments in Space , 1996 .

[75]  J. Winckler Controlled experiments in the earth's magnetosphere with artifical electron beams , 1992 .

[76]  Henry Garrett,et al.  Spacecraft–Environment Interactions: Plasma Interactions , 1996 .

[77]  Jason A. Vaughn,et al.  Plasma Interactions with a Negative Biased Electrodynamic Tether , 2003 .

[78]  M. Martinez-Sanchez,et al.  Spacecraft Electric Propulsion—An Overview , 1998 .

[79]  Tatsuo Onishi,et al.  Numerical study of current collection by an orbiting bare tether , 2002 .

[80]  C. C. Rupp A tether tension control law for tethered subsatellites deployed along local vertical , 1975 .

[81]  Claudio Bombardelli,et al.  Jupiter Power Generation with Electrodynamic Tethers at Constant Orbital Energy , 2009 .

[82]  Arun K. Misra,et al.  Deployment and Retrieval of Shuttle Supported Tethered Satellites , 1982 .