First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside

[1]  Tiantian Liu,et al.  Ballistic Sedimentation of Impact Crater Ejecta: Implications for the Provenance of Lunar Samples and the Resurfacing Effect of Ejecta on the Lunar Surface , 2020, Journal of Geophysical Research: Planets.

[2]  Xiaohui Fu,et al.  Composition, mineralogy and chronology of mare basalts and non-mare materials in Von Kármán crater: Landing site of the Chang’E−4 mission , 2019 .

[3]  Bin Zhou,et al.  Comparison of Dielectric Properties and Structure of Lunar Regolith at Chang'e‐3 and Chang'e‐4 Landing Sites Revealed by Ground‐Penetrating Radar , 2019, Geophysical Research Letters.

[4]  Bo Li,et al.  Geological characterization of the Chang'e-4 landing area on the lunar farside , 2019, Icarus.

[5]  Wei Yang,et al.  Olivine-norite rock detected by the lunar rover Yutu-2 likely crystallized from the SPA-impact melt pool , 2019, National science review.

[6]  Wei Zuo,et al.  Descent trajectory reconstruction and landing site positioning of Chang’E-4 on the lunar farside , 2019, Nature Communications.

[7]  J. Head,et al.  Geophysical Characteristics of Von Kármán Crater: Chang'E 4 Landing Site Region , 2019 .

[8]  Long Xiao,et al.  Geological Characteristics of Von Kármán Crater, Northwestern South Pole‐Aitken Basin: Chang'E‐4 Landing Site Region , 2018, Journal of Geophysical Research: Planets.

[9]  Yan Su,et al.  Pitfalls in GPR Data Interpretation: False Reflectors Detected in Lunar Radar Cross Sections by Chang’e-3 , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[10]  R. Yingst,et al.  Geologic Mapping of the Planck Quadrangle of the Moon (LQ-29) , 2017 .

[11]  Lionel Wilson,et al.  Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 1: Theory) , 2017 .

[12]  Lionel Wilson,et al.  Generation, ascent and eruption of magma on the Moon:new insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted Emplacement Processes and Observations) , 2017 .

[13]  Craig Warren,et al.  gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar , 2016, Comput. Phys. Commun..

[14]  David E. Smith,et al.  Thicknesses of mare basalts on the Moon from gravity and topography , 2016 .

[15]  Meng‐Hua Zhu,et al.  Estimates of primary ejecta and local material for the Orientale basin: Implications for the formation and ballistic sedimentation of multi-ring basins , 2016 .

[16]  P. G. Lucey,et al.  Global Map Products from the Kaguya Multiband Imager at 512 ppd: Minerals, FeO, and OMAT , 2016 .

[17]  M. Zuber,et al.  Subsurface morphology and scaling of lunar impact basins , 2016 .

[18]  David E. Smith,et al.  A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera , 2015 .

[19]  Jialong Lai,et al.  Structural analysis of lunar subsurface with Chang׳E-3 lunar penetrating radar , 2015 .

[20]  Guangyou Fang,et al.  A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission , 2015, Science.

[21]  Y. Yamaguchi,et al.  Mare volcanism: Reinterpretation based on Kaguya Lunar Radar Sounder data , 2014 .

[22]  David E. Smith,et al.  Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties , 2013, Science.

[23]  Sami W. Asmar,et al.  The Crust of the Moon as Seen by GRAIL , 2012, Science.

[24]  Doris Breuer,et al.  Asymmetric thermal evolution of the Moon , 2012 .

[25]  Jonathan Ainsworth,et al.  Statistics and Data , 2011, Research Ethics for Human Geography: A Handbook for Students.

[26]  A. McEwen,et al.  Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview , 2010 .

[27]  M. Robinson,et al.  Observations of Flow Lobes in the Phase I Lavas, Mare Imbrium, the Moon , 2010 .

[28]  Yasushi Yamaguchi,et al.  Distribution of the subsurface reflectors of the western nearside maria observed from Kaguya with Lunar Radar Sounder , 2009 .

[29]  P. Spudis,et al.  A new technique for estimating the thickness of mare basalts in Imbrium Basin , 2009 .

[30]  K. Bowman,et al.  Impact of the assimilation of ozone from the Tropospheric Emission Spectrometer on surface ozone across North America , 2009 .

[31]  S. Oshigami,et al.  Lunar Radar Sounder Observations of Subsurface Layers Under the Nearside Maria of the Moon , 2008, Science.

[32]  C. Pieters,et al.  Modeling the provenance of the Apollo 16 regolith , 2006 .

[33]  D. Heather,et al.  A stratigraphic study of southern Oceanus Procellarum using Clementine multispectral data , 2002 .

[34]  M. Zuber,et al.  The role of magma buoyancy on the eruption of lunar basalts , 2001 .

[35]  B. Cohen,et al.  Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. , 2000, Science.

[36]  Roger J. Phillips,et al.  The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution , 2000 .

[37]  J. J. Gillis,et al.  Geology of the Smythii and Marginis region of the Moon: Using integrated remotely sensed data , 2000 .

[38]  Paul G. Lucey,et al.  Basalt thickness in Mare Humorum: The crater excavation , 1998 .

[39]  J. Head,et al.  Volumes of lunar lava ponds in South Pole‐Aitken and Orientale Basins: Implications for eruption conditions, transport mechanisms, and magma source regions , 1997 .

[40]  Bonnie L. Cooper,et al.  New evidence for graben origin of Oceanus Procellarum from lunar sounder optical imagery , 1994 .

[41]  R. Reyment,et al.  Statistics and Data Analysis in Geology. , 1988 .

[42]  T. J. Killpack,et al.  Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium , 1978 .

[43]  James W. Head,et al.  Lunar volcanism in space and time. , 1976 .

[44]  R. J. Pike Ejecta from large craters on the moon: comments on the geometric model of McGetchin et al. , 1974 .

[45]  C. A. Pearse Photometry and polarimetry of the moon and their relationship to physical properties of the lunar surface , 1963 .

[46]  Harald Hiesinger,et al.  Lunar farside volcanism in and around the South Pole–Aitken basin , 2018 .

[47]  De Hon Thickness of the western mare basalts. , 1979 .

[48]  D. E. Stuart-Alexander,et al.  Geologic map of the central far side of the Moon , 1978 .

[49]  H. J. Moore,et al.  The scarcity of mappable flow lobes on the lunar maria - Unique morphology of the Imbrium flows , 1976 .

[50]  De Hon Thickness of mare material in the Tranquillitatis and Nectaris basins , 1974 .

[51]  G. Schaber Lava Flows in Mare Imbrium: Geologic Evaluation from Apollo Orbital Photography , 1973 .