Allelic functional variation of FimH among Salmonella enterica subspecies

[1]  L. Yin,et al.  Cinnamaldehyde Resist Salmonella Typhimurium Adhesion by Inhibiting Type I Fimbriae , 2022, Molecules.

[2]  F. Weill,et al.  A nontyphoidal Salmonella serovar domestication accompanying enhanced niche adaptation , 2022, EMBO molecular medicine.

[3]  Reshma B. Nambiar,et al.  Genomic Characterization of Antimicrobial-Resistant Salmonella enterica in Duck, Chicken, and Pig Farms and Retail Markets in Eastern China , 2022, Microbiology spectrum.

[4]  Xiaoping Zhou,et al.  Characterization of Two-Component System CitB Family in Salmonella Pullorum , 2022, International journal of molecular sciences.

[5]  Biao Tang,et al.  Higher tolerance of predominant Salmonella serovars circulating in the antibiotic-free feed farms to environmental stresses. , 2022, Journal of hazardous materials.

[6]  Xiaoping Zhou,et al.  Genome-Based Assessment of Antimicrobial Resistance and Virulence Potential of Isolates of Non-Pullorum/Gallinarum Salmonella Serovars Recovered from Dead Poultry in China , 2022, Microbiology spectrum.

[7]  Min Yue,et al.  Whole genome sequencing for the risk assessment of probiotic lactic acid bacteria , 2022, Critical reviews in food science and nutrition.

[8]  Yanting Tang,et al.  Genomic Investigation of Antimicrobial-Resistant Salmonella enterica Isolates From Dead Chick Embryos in China , 2021, Frontiers in Microbiology.

[9]  L. Deng,et al.  Targeting effect of berberine on type I fimbriae of Salmonella Typhimurium and its effective inhibition of biofilm , 2021, Applied Microbiology and Biotechnology.

[10]  Yan Li,et al.  Characterization of Multidrug Resistance Patterns of Emerging Salmonella enterica Serovar Rissen along the Food Chain in China , 2020, Antibiotics.

[11]  Hang Pan,et al.  Genomic characterization of Salmonella Uzaramo for human invasive infection , 2020, Microbial genomics.

[12]  K. Grzymajło,et al.  Pre-Growth Culture Conditions Affect Type 1 Fimbriae-Dependent Adhesion of Salmonella , 2020, International journal of molecular sciences.

[13]  Leigh A Knodler,et al.  Salmonella enterica. , 2019, Trends in microbiology.

[14]  L. Kenney,et al.  Salmonella biofilms program innate immunity for persistence in Caenorhabditis elegans , 2019, Proceedings of the National Academy of Sciences.

[15]  Rafał Kolenda,et al.  Everything You Always Wanted to Know About Salmonella Type 1 Fimbriae, but Were Afraid to Ask , 2019, Front. Microbiol..

[16]  Nancy R. Zhang,et al.  Allelic variation contributes to bacterial host specificity , 2015, Nature Communications.

[17]  Kailiang Jia,et al.  A protocol to infect Caenorhabditis elegans with Salmonella typhimurium. , 2014, Journal of visualized experiments : JoVE.

[18]  D. Schifferli,et al.  Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence , 2014, Front. Microbiol..

[19]  A. Wollam,et al.  Evolutionary Genomics of Salmonella enterica Subspecies , 2013, mBio.

[20]  F. Fang,et al.  Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin , 2012, PLoS pathogens.

[21]  C. Medus,et al.  Foodborne Outbreak of Salmonella Subspecies IV Infections Associated with Contamination from Bearded Dragons , 2011, Zoonoses and public health.

[22]  E. Sokurenko,et al.  Single nucleotide polypmorphisms of fimH associated with adherence and biofilm formation by serovars of Salmonella enterica. , 2011, Microbiology.

[23]  V. Yarov-Yarovoy,et al.  Allosteric Catch Bond Properties of the FimH Adhesin from Salmonella enterica Serovar Typhimurium* , 2011, The Journal of Biological Chemistry.

[24]  J. Jaworski,et al.  The high-adhesive properties of the FimH adhesin of Salmonella enterica serovar Enteritidis are determined by a single F118S substitution. , 2010, Microbiology.

[25]  Bert L. de Groot,et al.  Ligand docking and binding site analysis with PyMOL and Autodock/Vina , 2010, J. Comput. Aided Mol. Des..

[26]  Huanchun Chen,et al.  FimH alleles direct preferential binding of Salmonella to distinct mammalian cells or to avian cells. , 2009, Microbiology.

[27]  B. Finlay,et al.  Aggregation via the Red, Dry, and Rough Morphotype Is Not a Virulence Adaptation in Salmonella enterica Serovar Typhimurium , 2008, Infection and Immunity.

[28]  C. Dorman,et al.  The Leucine-Responsive Regulatory Protein, Lrp, Activates Transcription of the fim Operon in Salmonella enterica Serovar Typhimurium via the fimZ Regulatory Gene , 2007, Journal of bacteriology.

[29]  N. Ledeboer,et al.  Salmonella enterica Serovar Typhimurium Requires the Lpf, Pef, and Tafi Fimbriae for Biofilm Formation on HEp-2 Tissue Culture Cells and Chicken Intestinal Epithelium , 2006, Infection and Immunity.

[30]  A. Wieliczko,et al.  Functional characterization of the FimH adhesin from Salmonella enterica serovar Enteritidis. , 2006, Microbiology.

[31]  E. Denamur,et al.  The FimH A27V Mutation Is Pathoadaptive for Urovirulence in Escherichia coli B2 Phylogenetic Group Isolates , 2003, Infection and Immunity.

[32]  C. Kurz,et al.  Caenorhabditis elegans: an emerging genetic model for the study of innate immunity , 2003, Nature Reviews Genetics.

[33]  S. Clegg,et al.  Differential binding to and biofilm formation on, HEp‐2 cells by Salmonella enterica Serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster , 2002, Molecular microbiology.

[34]  G. Waksman,et al.  Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection , 2002, Molecular microbiology.

[35]  C. Kurz,et al.  Caenorhabditis elegans is a model host for Salmonella typhimurium , 2000, Current Biology.

[36]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Court,et al.  An efficient recombination system for chromosome engineering in Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Dykhuizen,et al.  Pathoadaptive mutations: gene loss and variation in bacterial pathogens. , 1999, Trends in microbiology.

[39]  D. Dykhuizen,et al.  Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Miranda,et al.  A comprehensive review of non-enterica subspecies of Salmonella enterica. , 2018, Microbiological research.

[41]  Raag D. Airan,et al.  Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures , 2010, Nature Protocols.