Resource Bricolage for Parallel Database Systems
暂无分享,去创建一个
[1] David J. DeWitt,et al. Data placement in shared-nothing parallel database systems , 1997, The VLDB Journal.
[2] T. N. Vijaykumar,et al. Tarazu: optimizing MapReduce on heterogeneous clusters , 2012, ASPLOS XVII.
[3] Eli Upfal,et al. Performance prediction for concurrent database workloads , 2011, SIGMOD '11.
[4] Vivek R. Narasayya,et al. Integrating vertical and horizontal partitioning into automated physical database design , 2004, SIGMOD '04.
[5] George B. Dantzig,et al. Linear Programming 1: Introduction , 1997 .
[6] Randy H. Katz,et al. Improving MapReduce Performance in Heterogeneous Environments , 2008, OSDI.
[7] Jeffrey F. Naughton,et al. Toward Progress Indicators on Steroids for Big Data Systems , 2013, CIDR.
[8] Nicolas Bruno,et al. Automated partitioning design in parallel database systems , 2011, SIGMOD '11.
[9] Jeffrey F. Naughton,et al. Increasing the accuracy and coverage of SQL progress indicators , 2005, 21st International Conference on Data Engineering (ICDE'05).
[10] Carlo Curino,et al. Schism , 2010, Proc. VLDB Endow..
[11] Carlo Curino,et al. Skew-aware automatic database partitioning in shared-nothing, parallel OLTP systems , 2012, SIGMOD Conference.
[12] Magdalena Balazinska,et al. Estimating the progress of MapReduce pipelines , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).
[13] Surajit Chaudhuri,et al. A Statistical Approach Towards Robust Progress Estimation , 2011, Proc. VLDB Endow..
[14] Liang Chen,et al. Handling data skew in parallel joins in shared-nothing systems , 2008, SIGMOD Conference.
[15] Jeffrey F. Naughton,et al. Towards Predicting Query Execution Time for Concurrent and Dynamic Database Workloads , 2013, Proc. VLDB Endow..
[16] Randy H. Katz,et al. Heterogeneity and dynamicity of clouds at scale: Google trace analysis , 2012, SoCC '12.
[17] Surajit Chaudhuri,et al. When can we trust progress estimators for SQL queries? , 2005, SIGMOD '05.
[18] Nick Koudas,et al. A Lightweight Online Framework For Query Progress Indicators , 2007, 2007 IEEE 23rd International Conference on Data Engineering.
[19] Benjamin Farley,et al. More for your money: exploiting performance heterogeneity in public clouds , 2012, SoCC '12.
[20] T. S. Eugene Ng,et al. The Impact of Virtualization on Network Performance of Amazon EC2 Data Center , 2010, 2010 Proceedings IEEE INFOCOM.
[21] Eli Upfal,et al. Learning-based Query Performance Modeling and Prediction , 2012, 2012 IEEE 28th International Conference on Data Engineering.
[22] Tom W. Keller,et al. Data placement in Bubba , 1988, SIGMOD '88.
[23] David J. DeWitt,et al. A performance analysis of alternative multi-attribute declustering strategies , 1992, SIGMOD '92.
[24] Jeffrey F. Naughton,et al. GSLPI: A Cost-Based Query Progress Indicator , 2012, 2012 IEEE 28th International Conference on Data Engineering.
[25] Magdalena Balazinska,et al. ParaTimer: a progress indicator for MapReduce DAGs , 2010, SIGMOD Conference.
[26] Surajit Chaudhuri,et al. Estimating progress of execution for SQL queries , 2004, SIGMOD '04.
[27] Jeffrey F. Naughton,et al. Toward a progress indicator for database queries , 2004, SIGMOD '04.
[28] Chun Zhang,et al. Automating physical database design in a parallel database , 2002, SIGMOD '02.
[29] David J. DeWitt,et al. Practical Skew Handling in Parallel Joins , 1992, VLDB.
[30] Jorge-Arnulfo Quiané-Ruiz,et al. Runtime measurements in the cloud , 2010, Proc. VLDB Endow..
[31] Jeffrey F. Naughton,et al. Predicting query execution time: Are optimizer cost models really unusable? , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).
[32] Archana Ganapathi,et al. Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine Learning , 2009, 2009 IEEE 25th International Conference on Data Engineering.