Probabilistic Mesomechanical Fatigue Model

A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.

[1]  Gary R. Halford,et al.  Evolution of creep-fatigue life prediction models , 1991 .

[2]  Keisuke Tanaka,et al.  A model of crack-tip slip band blocked by grain boundary , 1978 .

[3]  Zhang Fu-Ze The Fatigue Scatter Factors and Reduction Factors in the Design of Aircraft and Helicopter's Structural Lives , 1991 .

[4]  L. M. Brown Dislocation substructures and the initiation of cracks by fatigue , 1977 .

[5]  W. Hackbusch Singular Integral Equations , 1995 .

[6]  J. Lankford,et al.  A crack-tip strain model for the growth of small fatigue cracks , 1983 .

[7]  D. Davidson Small and large fatigue cracks in aluminum alloys , 1988 .

[8]  M. A. Hicks,et al.  Effects of microstructure on long and short crack growth in nickel base superalloys , 1984 .

[9]  S. K. Kurtz,et al.  Properties of a three-dimensional poisson-voronoi tesselation: A Monte Carlo study , 1993 .

[10]  T. Ogawa,et al.  The effect of grain size on small fatigue crack growth in pure titanium , 1994 .

[11]  R. Armstrong,et al.  The plastic deformation of polycrystalline aggregates , 1962 .

[12]  R. Ohtani,et al.  Creep life prediction based on stochastic model of microstructurally short crack growth , 1989 .

[13]  D. Coker,et al.  Mechanical Properties for Advanced Engine Materials , 1992 .

[14]  Wilson H. Tang,et al.  Probability concepts in engineering planning and design , 1984 .

[15]  R. Miner,et al.  Fatigue crack initiation and propagation in several nickel-base superalloys at 650°C , 1983 .

[16]  K. Chan,et al.  Growth of Small Cracks in Aeroengine Disc Materials. , 1988 .

[17]  K. J. Miller,et al.  THE BEHAVIOUR OF SHORT FATIGUE CRACKS AND THEIR INITIATION PART II‐A GENERAL SUMMARY , 1987 .

[18]  K. Tanaka,et al.  Grain Size Effect on Crack Nucleation and Growth in Long-Life Fatigue of Low-Carbon Steel , 1979 .

[19]  J. Weertman Crack tip stress intensity factor of the double slip plane crack model: Short cracks and short short-cracks , 1984 .

[20]  R. E. Little,et al.  Statistical design of fatigue experiments , 1978 .

[21]  M. A. Mull,et al.  A probabilistic approach to the fracture toughness of composites , 1987 .

[22]  G. Smith,et al.  Crack propagation in high stress fatigue , 1962 .

[23]  A. Cottrell,et al.  The spread of plastic yield from a notch , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  B. N. Cox,et al.  A STATISTICAL MODEL OF INTERMITTENT SHORT FATIGUE CRACK GROWTH , 1987 .

[25]  P. D. Hobson THE FORMULATION OF A CRACK GROWTH EQUATION FOR SHORT CRACKS , 1982 .

[26]  K. J. Miller,et al.  Short crack fatigue behaviour in a medium carbon steel , 1984 .

[27]  J. Lankford,et al.  The role of microstructural dissimilitude in fatigue and fracture of small cracks , 1988 .

[28]  Sankaran Mahadevan,et al.  Development of a reliability-based fatigue life model for gas turbine engine structures , 1996 .

[29]  Johannes Weertman,et al.  Rate of growth of fatigue cracks calculated from the theory of infinitesimal dislocations distributed on a plane , 1966 .

[30]  Nisitani Hironobu,et al.  Significance of initiation, propagation and closure of microcracks in high cycle fatigue of ductile metals , 1981 .

[31]  Robert P. Wei,et al.  Modelling of small fatigue crack growth interacting with grain boundary , 1986 .

[32]  W. Gerberich,et al.  A Review of Fatigue Fracture Topology Effects on Threshold and Growth Mechanisms , 1979 .

[33]  Markov models for fatigue crack growth , 1988 .

[34]  T. Cruse,et al.  A reliability-based model to predict scatter in fatigue crack nucleation life , 1998 .

[35]  R. Armstrong The strengthening or weakening of polycrystals due to the presence of grain boundaries , 1974 .

[36]  J. C. Newman,et al.  Impact of small-crack effects on designlife calculations , 1989 .

[37]  M. Goto STATISTICAL INVESTIGATION OF THE BEHAVIOUR OF MICROCRACKS IN CARBON STEELS , 1991 .

[38]  K. Chan,et al.  The crystallography of fatigue crack initiation in coarse grained astroloy at 20°C , 1989 .

[39]  A. Navarro,et al.  A MICROSTRUCTURALLY-SHORT FATIGUE CRACK GROWTH EQUATION , 1988 .

[40]  M. Goto STATISTICAL INVESTIGATION OF THE BEHAVIOUR OF SMALL CRACKS AND FATIGUE LIFE IN CARBON STEELS WITH DIFFERENT FERRITE GRAIN SIZES , 1994 .

[41]  W. Morris,et al.  A simple model of stress intensity range threshold and crack closure stress , 1983 .

[42]  E. R. Rios,et al.  Modelling microstructurally sensitive fatigue short crack growth , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[43]  G. Welsch,et al.  Fatigue damage accumulation in nickel prior to crack initiation , 1991 .

[44]  Fatigue crack nucleation at intermetallic particles in alloys — A dislocation pile-up model , 1979 .

[45]  Cyril Stanley Smith,et al.  A search for structure , 1981 .

[46]  Jaap Schijve,et al.  FATIGUE PREDICTIONS AND SCATTER , 1994 .

[47]  S. Kurtz,et al.  Microstructure and normal grain growth in metals and ceramics. Part I. Theory , 1980 .

[48]  K. Tanaka,et al.  A micromechanical theory of fatique crack initiation from notches , 1982 .

[49]  G. K. Haritos,et al.  Mesomechanics: The microstructure-mechanics connection , 1988 .

[50]  A. Navarro,et al.  Considerations of grain orientation and work hardening on short-fatigue-crack modelling , 1990 .

[51]  Achintya Haldar,et al.  Practical random field discretization in stochastic finite element analysis , 1991 .

[52]  Computer simulation of fatigue crack initiation , 1980 .

[53]  A. Bataille,et al.  Surface damage accumulation in low-cycle fatigue: Physical analysis and numerical modelling , 1994 .

[54]  Charles S. Barrett,et al.  The Structure of Metals , 1904, Nature.

[55]  N. Louat,et al.  The Distribution of Dislocations in Linear Arrays , 1955 .

[56]  David L. Davidson,et al.  The influence of crack tip plasticity in the growth of small fatigue cracks , 1984 .

[57]  Lajos Kator,et al.  Plastic Deformation of Metals , 1953, Nature.

[58]  N. Dowling,et al.  Opening and closing of cracks at high cyclic strains , 1986 .

[59]  T. A. Cruse,et al.  Probabilistic Mesomechanical Fatigue Crack Nucleation Model , 1997 .

[60]  T. Mura,et al.  A Theory of Fatigue Crack Initiation in Solids , 1990 .

[61]  D. Kuhlmann-wilsdorf,et al.  Dislocation behavior in fatigue , 1977 .

[62]  Statistical investigation of surface fatigue cracks in large-sized turbine rotor shaft steel , 1987 .

[63]  Mircea Grigoriu,et al.  STOCHASTIC FINITE ELEMENT ANALYSIS OF SIMPLE BEAMS , 1983 .

[64]  Ka Peters,et al.  Statistical Fatigue Failure Analysis , 1981 .

[65]  S. Antolovich,et al.  Effect of Microstructure on Fatigue Crack Propagation: A Review of Existing Models and Suggestions for Further Research , 1983 .

[66]  B. Patterson,et al.  Effect of the Degree of Prior Cold Work on the Grain Volume Distribution and the Rate of Grain Growth of Recrystallized Aluminum , 1982 .

[67]  Y. Ochi,et al.  Effects of Material Structures on Statistical Scatter in Initiation and Growth Lives of Surface Cracks and Failure Life in Fatigue , 1989 .

[68]  K. J. Miller,et al.  MODELLING SMALL FATIGUE CRACKS INTERACTING WITH GRAIN BOUNDARIES , 1991 .

[69]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[70]  T. Mura,et al.  Free energy formulation of fatigue crack initiation along persistent slip bands: calculation of SN curves and crack depths , 1990 .

[71]  C. V. Cooper,et al.  Coffin-manson relation for fatigue crack initiation , 1984 .

[72]  K. J. Miller THE BEHAVIOUR OF SHORT FATIGUE CRACKS AND THEIR INITIATION , 1988 .

[73]  G. S. Ansell Plastic Deformation in Metals , 1964 .

[74]  M. Kato,et al.  Statistical consideration of fatigue damage accumulation , 1992 .

[75]  Fa Bastenaire,et al.  NEW METHOD FOR THE STATISTICAL EVALUATION OF CONSTANT STRESS AMPLITUDE FATIGUE-TEST RESULTS , 1971 .

[76]  S. Antolovich,et al.  A study of fatigue damage mechanisms in Waspaloy from 25 to 800 C , 1984 .

[77]  Peter Joseph Edward Forsyth,et al.  The physical basis of metal fatigue , 1969 .

[78]  Jt Fong,et al.  Statistical Aspects of Fatigue at Microscopic, Specimen, and Component Levels , 1979 .

[79]  Toshio Mura,et al.  A Dislocation Model for Fatigue Crack Initiation , 1981 .

[80]  G. I. Barenblatt On a model of small fatigue cracks , 1987 .

[81]  Alexander Chudnovsky,et al.  A probabilistic model of brittle crack formation , 1987 .

[82]  James C. Newman,et al.  An assessment of the small-crack effect for 2024-T3 aluminum alloy , 1986 .

[83]  Probabilistic fracture mechanics of 2D carbon-carbon composites , 1992 .