Morphology and unbiased stereology of the lateral superior olive in the short‐beaked common dolphin, Delphinus delphis (Cetacea, Delphinidae)

In all mammals, the superior olivary complex (SOC) comprises a group of auditory brainstem nuclei that are important for sound localization. Its principal nuclei, the lateral superior olive (LSO) and the medial superior olive (MSO) process interaural time and intensity differences, which are the main cues for sound localization in the horizontal plane. Toothed whales (odontocetes) rely heavily on hearing and echolocation for foraging, orientation, and communication and localize sound with great acuity. The investigation of the SOC in odontocetes provides insight into adaptations to underwater hearing and echolocation. However, quantitative anatomical data for odontocetes are currently lacking. We quantified the volume, total neuron number, and neuron density of the LSO of six common dolphins (Delphinus delphis) using the Cavalieri principle and the unbiased stereology optical fractionator. Our results show that the LSO in D. delphis has a volume of 150 + (SD = 27) mm3, which is on average 69 (SEM = 19) times larger than the LSO in human, or 37 (SEM = 11) times larger than the human LSO and MSO combined. The LSO of D. delphis contains 20,876 ± (SD = 3300) neurons. In comparison, data reported for the human brainstem indicate the LSO has only about ¼ that number but about the same number for the LSO and MSO combined (21,100). LSO neurons range from 21 to 25 μm (minor axis) and from 44 to 61 μm (major axis) in transverse sections. The LSO neuron packing density is 1080 ± (SD = 204) neurons/mm3, roughly half of the LSO neuron density in human. SMI‐32‐immunohistochemistry was used to visualize projection neurons in the LSO and revealed the presence of principal, marginal, and multipolar neurons in transverse sections. The distinct morphology of the LSO likely reflects the common dolphin's superb sensitivity to ultra‐high frequencies and ability to detect and analyze sounds and their location as part of its underwater spatial localization and echolocation tasks.

[1]  Yohan J. John,et al.  The cortical spectrum: A robust structural continuum in primate cerebral cortex revealed by histological staining and magnetic resonance imaging , 2021, bioRxiv.

[2]  L. Slomianka Basic quantitative morphological methods applied to the central nervous system , 2020, The Journal of comparative neurology.

[3]  I. Gibbons,et al.  Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior. , 2020, Brazilian journal of biology = Revista brasleira de biologia.

[4]  R. Fordyce,et al.  Anatomy of the Dolphins-Insights into Body Structure and Function. , 2018, Ameghiniana.

[5]  L. Sita,et al.  The Importance of Titrating Antibodies for Immunocytochemical Methods , 2016, Current protocols in neuroscience.

[6]  Bente Pakkenberg,et al.  Quantitative relationships in delphinid neocortex , 2014, Front. Neuroanat..

[7]  Suzana Herculano-Houzel,et al.  The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution , 2014, Glia.

[8]  S. Huggenberger,et al.  The dolphin cochlear nucleus: Topography, histology and functional implications , 2012, Journal of morphology.

[9]  E. Babushina,et al.  Comparative Analysis of Spatial Hearing of Terrestrial, Semiaquatic and Aquatic Mammals , 2011 .

[10]  U. Siebert,et al.  Stereology of the Neocortex in Odontocetes: Qualitative, Quantitative, and Functional Implications , 2011, Brain, Behavior and Evolution.

[11]  Rogely Waite Boyce,et al.  Design-based Stereology , 2010, Toxicologic pathology.

[12]  D. Houser,et al.  Interaural differences in the bottlenose dolphin (Tursiops truncatus) auditory nerve response to jawphone click stimuli. , 2010, The Journal of the Acoustical Society of America.

[13]  B. Grothe,et al.  Mechanisms of sound localization in mammals. , 2010, Physiological reviews.

[14]  S. Ridgway,et al.  Cetacean Brain Evolution: Dwarf Sperm Whale (Kogia sima) and Common Dolphin (Delphinus delphis) – An Investigation with High-Resolution 3D MRI , 2010, Brain, Behavior and Evolution.

[15]  J. Call,et al.  Superior olivary complex organization and cytoarchitecture may be correlated with function and catarrhine primate phylogeny , 2009, Brain Structure and Function.

[16]  W. Le,et al.  The Importance of Titrating Antibodies for Immunocytochemical Methods , 2008, Current protocols in neuroscience.

[17]  B. Grothe,et al.  Interaural Time Difference Processing in the Mammalian Medial Superior Olive: The Role of Glycinergic Inhibition , 2008, The Journal of Neuroscience.

[18]  R. Kulesza Cytoarchitecture of the human superior olivary complex: Nuclei of the trapezoid body and posterior tier , 2008, Hearing Research.

[19]  S. Ridgway,et al.  Morphology and Evolutionary Biology of the Dolphin (Delphinus sp.) Brain – MR Imaging and Conventional Histology , 2007, Brain, Behavior and Evolution.

[20]  L. Lefebvre,et al.  Cetaceans Have Complex Brains for Complex Cognition , 2007, PLoS biology.

[21]  R. Kulesza Cytoarchitecture of the human superior olivary complex: Medial and lateral superior olive , 2007, Hearing Research.

[22]  E. Mercado,et al.  Sound Localization by Cetaceans , 2006 .

[23]  D. Houser,et al.  Variation in the hearing sensitivity of a dolphin population determined through the use of evoked potential audiometry. , 2006, The Journal of the Acoustical Society of America.

[24]  P. Nachtigall,et al.  Temporal resolution of the Risso’s dolphin, Grampus griseus, auditory system , 2006, Journal of Comparative Physiology A.

[25]  P. R. Hof,et al.  Design-based stereology in neuroscience , 2005, Neuroscience.

[26]  K. Zilles,et al.  Characterization of the rhesus monkey superior olivary complex by calcium binding proteins and synaptophysin , 2005, Journal of anatomy.

[27]  T. Yin,et al.  Interaural Phase and Level Difference Sensitivity in Low-Frequency Neurons in the Lateral Superior Olive , 2005, The Journal of Neuroscience.

[28]  Patrick R Hof,et al.  Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[29]  O. Güntürkün,et al.  Neuron numbers in sensory cortices of five delphinids compared to a physeterid, the pygmy sperm whale , 2005, Brain Research Bulletin.

[30]  B. Grothe,et al.  Anatomy and projection patterns of the superior olivary comlex in the mexican free‐tailed bat, Tadarida brasiliensis mexicana , 2004, The Journal of comparative neurology.

[31]  R. Stern,et al.  A comparative study of the superior fertility of ‘Smoothee Golden Delicious’ apple , 2004 .

[32]  N. Cant,et al.  Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei , 2003, Brain Research Bulletin.

[33]  M. Rosa,et al.  Laminar expression of neurofilament protein in the superior colliculus of the marmoset monkey (Callithrix jacchus) , 2003, Brain Research.

[34]  D. Tollin The Lateral Superior Olive: A Functional Role in Sound Source Localization , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[35]  R. Rübsamen,et al.  Characterization of the human superior olivary complex by calcium binding proteins and neurofilament H (SMI‐32) , 2003, The Journal of comparative neurology.

[36]  R. Kulesza,et al.  Unbiased stereological estimates of neuron number in subcortical auditory nuclei of the rat , 2002, Hearing Research.

[37]  Jean K. Moore Organization of the human superior olivary complex , 2000, Microscopy research and technique.

[38]  B. Grothe,et al.  Structure and function of the bat superior olivary complex , 2000, Microscopy research and technique.

[39]  Joe C. Adams,et al.  Specialized sound reception in dolphins—a hint for the function of the dorsal cochlear nucleus in mammals , 2000 .

[40]  H. Gundersen,et al.  The efficiency of systematic sampling in stereology — reconsidered , 1999, Journal of microscopy.

[41]  J. Hedreen Lost caps in histological counting methods , 1998, The Anatomical record.

[42]  K. Glendenning,et al.  Comparative Morphometry of Mammalian Central Auditory Systems: Variation in Nuclei and Form of the Ascending System , 1998, Brain, Behavior and Evolution.

[43]  Vladimir V. Popov,et al.  Envelope-following response and modulation transfer function in the dolphin's auditory system , 1995, Hearing Research.

[44]  P. E. Nachtigall,et al.  Modulation rate transfer functions to low-frequency carriers in three species of cetaceans , 1995, Journal of Comparative Physiology A.

[45]  M. W. Spitzer,et al.  Neurons sensitive to interaural phase disparity in gerbil superior olive: diverse monaural and temporal response properties. , 1995, Journal of neurophysiology.

[46]  T. Yin,et al.  Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences. , 1995, Journal of neurophysiology.

[47]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[48]  V. Popov,et al.  Direction-dependent spectral sensitivity and interaural spectral difference in a dolphin: evoked potential study. , 1993, The Journal of the Acoustical Society of America.

[49]  J. Morrison,et al.  The primary auditory cortex in cetacean and human brain: A comparative analysis of neurofilament protein-containing pyramidal neurons , 1992, Neuroscience Letters.

[50]  J. Kelly,et al.  Binaural interaction in the lateral superior olive: time difference sensitivity studied in mouse brain slice. , 1992, Journal of neurophysiology.

[51]  H. Heffner,et al.  Visual factors in sound localization in mammals , 1992, The Journal of comparative neurology.

[52]  J. Zook,et al.  Classification of the principal cells of the medial nucleus of the trapezoid body , 1991, The Journal of comparative neurology.

[53]  V. Popov,et al.  Interaural intensity and latency difference in the dolphin's auditory system , 1991, Neuroscience Letters.

[54]  H. Gundersen,et al.  Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator , 1991, The Anatomical record.

[55]  V. Popov,et al.  Electrophysiological study of interaural sound intensity difference in the dolphinInia geoffrensis , 1991, Experientia.

[56]  P. J. Waddell,et al.  Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. , 1991, The Journal of physiology.

[57]  D. Caspary,et al.  Low-frequency neurons in the lateral superior olive exhibit phase-sensitive binaural inhibition. , 1991, Journal of neurophysiology.

[58]  D. Sanes An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  T. Yin,et al.  Interaural time sensitivity in medial superior olive of cat. , 1990, Journal of neurophysiology.

[60]  H. Spoendlin,et al.  Analysis of the human auditory nerve , 1989, Hearing Research.

[61]  J. Morrison,et al.  Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex , 1989, The Journal of comparative neurology.

[62]  J. Nadol,et al.  Comparative anatomy of the cochlea and auditory nerve in mammals , 1988, Hearing Research.

[63]  H. J. G. Gundersen,et al.  The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[64]  P. Morgane,et al.  Visual cortex of the dolphin: An image analysis study , 1988, The Journal of comparative neurology.

[65]  H Haug,et al.  Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). , 1987, The American journal of anatomy.

[66]  H J Gundersen,et al.  The efficiency of systematic sampling in stereology and its prediction * , 1987, Journal of microscopy.

[67]  R. Helfert,et al.  Morphological features of five neuronal classes in the gerbil lateral superior olive. , 1987, The American journal of anatomy.

[68]  D. Rosene,et al.  A cryoprotection method that facilitates cutting frozen sections of whole monkey brains for histological and histochemical processing without freezing artifact. , 1986, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[69]  J. H. Casseday,et al.  Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei , 1986, The Journal of comparative neurology.

[70]  R. Helfert,et al.  Morphological evidence for the existence of multiple neuronal classes in the cat lateral superior olivary nucleus , 1986, The Journal of comparative neurology.

[71]  H. Heffner,et al.  Localization of tones by horses: use of binaural cues and the role of the superior olivary complex. , 1986, Behavioral neuroscience.

[72]  N. Cant The fine structure of the lateral superior olivary nucleus of the cat , 1984, The Journal of comparative neurology.

[73]  D. C. Sterio The unbiased estimation of number and sizes of arbitrary particles using the disector , 1984, Journal of microscopy.

[74]  K. Glendenning,et al.  Acoustic chiasm: efferent projections of the lateral superior olive , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  J. Zook,et al.  Cytoarchitecture of auditory system in lower brainstem of the mustache bat, Pteronotus parnellii , 1982, The Journal of comparative neurology.

[76]  S. Waxman Determinants of conduction velocity in myelinated nerve fibers , 1980, Muscle & nerve.

[77]  I. Schwartz Dendritic arrangements in the cat medial superior olive , 1977, Neuroscience.

[78]  N. Strominger,et al.  Anatomical aspects of the superior olivary complex , 1976, The Journal of comparative neurology.

[79]  A. Popper,et al.  Sound localization by the bottlenose porpoise Tursiops truncatus. , 1975, The Journal of experimental biology.

[80]  G. C. Thompson,et al.  Neuroanatomical basis of binaural phase-difference analysis for sound localization: a comparative study. , 1975, Journal of comparative and physiological psychology.

[81]  E. Wever,et al.  The cochlea of the dolphin, Tursiops truncatus: hair cells and ganglion cells. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. Goldberg,et al.  Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. , 1968, Journal of neurophysiology.

[83]  J. Boudreau,et al.  Binaural interaction in the cat superior olive S segment. , 1967, Journal of neurophysiology.

[84]  R. Irving,et al.  The superior olivary complex and audition: A comparative study , 1967, The Journal of comparative neurology.

[85]  C. S. Johnson AUDITORY THRESHOLDS OF THE BOTTLENOSED PORPOISE (TURSIOPS TRUNCATUS, MONTAGU) , 1966 .

[86]  W. Warr,et al.  A study of the cochlear nuclei and ascending auditory pathways of the medulla , 1962, The Journal of comparative neurology.

[87]  G. L. Rasmussen,et al.  Fiber analysis of the statoacoustic nerve of guinea pig, cat, and monkey , 1961, The Anatomical record.

[88]  A. Mills On the minimum audible angle , 1958 .

[89]  W. Stotler An experimental study of the cells and connections of the superior olivary complex of the cat , 1953, The Journal of comparative neurology.

[90]  L. Jongkees,et al.  On Directional Hearing , 1946, The Journal of Laryngology & Otology.

[91]  O. Langworthy Central Nervous System of the Porpoise Tursiops Truncatus , 1931 .

[92]  J. Winn,et al.  Brain , 1878, The Lancet.

[93]  Robin L. Vaughn-Hirshorn Social Ecology of Feeding in an Open Ocean , 2019, Ethology and Behavioral Ecology of Odontocetes.

[94]  T. Ogawa,et al.  On the Acoustic System in the Cetacean Brains , 2016 .

[95]  J. Syka,et al.  Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat , 2011, Brain Structure and Function.

[96]  M. B. Tarakanov,et al.  Audiogram Variability in Normal Bottlenose Dolphins ( Tursiops truncatus ) , 2007 .

[97]  J. Winer,et al.  The Central Auditory System: A Functional Analysis , 2005 .

[98]  C. Carr,et al.  Development of the Auditory Centers Responsible for Sound Localization , 2005 .

[99]  R. Klinke,et al.  Processing of binaural stimuli by cat superior olivary complex neurons , 2004, Experimental Brain Research.

[100]  Mark J West,et al.  Design-based stereological methods for counting neurons. , 2002, Progress in brain research.

[101]  Sam H. Ridgway,et al.  The Auditory Central Nervous System of Dolphins , 2000 .

[102]  B. Grothe,et al.  The function of the medial superior olive in small mammals: temporal receptive fields in auditory analysis , 2000, Journal of Comparative Physiology A.

[103]  D. Ketten STRUCTURE AND FUNCTION IN WHALE EARS , 1997 .

[104]  K. Sugi,et al.  [Electrophysiological study]. , 1996, Nihon rinsho. Japanese journal of clinical medicine.

[105]  R B Masterton,et al.  Central auditory system. , 1993, ORL; journal for oto-rhino-laryngology and its related specialties.

[106]  V. Popov,et al.  Electrophysiological Study of the Interaural Intensity Difference and Interaural Time-Delay in Dolphins , 1992 .

[107]  Henry E. Heffner,et al.  Evolution of Sound Localization in Mammals , 1992 .

[108]  P. Morgane,et al.  Morphological and Histochemical Features of Odontocete Visual Neocortex: Immunocytochemical Analysis of Pyramidal and Non-Pyramidal Populations of Neurons , 1992 .

[109]  G. Guofu,et al.  Fiber Analysis of the Optic and Cochlear Nerves of Small Cetaceans , 1992 .

[110]  Darlene R. Ketten,et al.  The Marine Mammal Ear: Specializations for Aquatic Audition and Echolocation , 1992 .

[111]  J. H. Casseday,et al.  Parallel Auditory Pathways: II — Functional Properties , 1988 .

[112]  Patrick W. Moore,et al.  Temporal Order Discrimination Within the Dolphin Critical Interval , 1988 .

[113]  P. Morgane,et al.  Some Comparative Aspects of Auditory Brainstem Cytoarchitecture in Echolocating Mammals: Speculations on the Morphological Basis of Time-Domain Signal Processing , 1988 .

[114]  Sam H. Ridgway,et al.  The Cetacean Central Nervous System , 1988 .

[115]  J. H. Casseday,et al.  Parallel Auditory Pathways: I — Structure and Connections , 1988 .

[116]  James A. Simmons,et al.  Directional Hearing and Sound Localization in Echolocating Animals , 1987 .

[117]  J. H. Casseday,et al.  Central Auditory Pathways in Directional Hearing , 1987 .

[118]  G. Neuweiler,et al.  Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat Molossus ater. , 1985, Journal of neurophysiology.

[119]  W. E. Evans,et al.  Adaptiveness and Ecology of Echolocation in Toothed Whales , 1980 .

[120]  T. Bullock,et al.  Soviet literature on the nervous system and psychobiology of Cetacea. , 1979, International review of neurobiology.

[121]  E. Petelina [Structure and topography of the superior olive complex in the dolphin]. , 1973, Arkhiv anatomii, gistologii i embriologii.

[122]  R. Moore,et al.  A comparative study of the superior olivary complex in the primate brain. , 1971, Folia primatologica; international journal of primatology.

[123]  M. Feldman,et al.  Anatomical aspects of the cochlear nucleus and superior olivary complex. , 1970, Contributions to sensory physiology.

[124]  A. S. Graaf Anatomical aspects of the cetacean brain stem , 1967 .

[125]  R. Irving,et al.  Visual and nonvisual auditory systems in mammals. Anatomical evidence indicates two kinds of auditory pathways and suggests two kinds of hearing in mammals. , 1966, Science.