Existence of Chaos in the Chen System with Linear Time-Delay Feedback
暂无分享,去创建一个
Celso Grebogi | Kun Tian | Hai Peng Ren | C. Grebogi | H. Ren | Kun Tian
[2] Celso Grebogi,et al. Dynamics of delay induced composite multi-scroll attractor and its application in encryption , 2017 .
[3] T. N. Mokaev,et al. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .
[4] Kathrin Padberg-Gehle,et al. Nonautonomous control of stable and unstable manifolds in two-dimensional flows , 2013, 1308.1165.
[5] Guanwei Chen. Non-periodic damped vibration systems with sublinear terms at infinity: Infinitely many homoclinic orbits , 2013 .
[6] Nikolay V. Kuznetsov,et al. On differences and similarities in the analysis of Lorenz, Chen, and Lu systems , 2014, Appl. Math. Comput..
[7] Xiaofan Wang,et al. Generating chaos in Chua's circuit via time-delay feedback , 2001 .
[8] Y. Y. Chen,et al. Constructing explicit homoclinic solution of oscillators: An improvement for perturbation procedure based on nonlinear time transformation , 2017, Commun. Nonlinear Sci. Numer. Simul..
[9] M. T. Yassen,et al. Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems , 2012, Appl. Math. Comput..
[10] Kestutis Pyragas,et al. An electronic analog of the Mackey-Glass system , 1995 .
[11] Yueheng Lan,et al. A variational approach to connecting orbits in nonlinear dynamical systems , 2014 .
[12] Nikolay V. Kuznetsov,et al. Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..
[13] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[14] C. Zhu,et al. Multiple transverse homoclinic solutions near a degenerate homoclinic orbit , 2015 .
[15] Valent'in Mendoza,et al. Minimal topological chaos coexisting with a finite set of homoclinic and periodic orbits , 2016 .
[16] Manuel Merino,et al. Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. , 2013, Chaos.
[17] D. Costa,et al. On a class of singular second-order Hamiltonian systems with infinitely many homoclinic solutions , 2012, 1211.6779.
[18] T. N. Mokaev,et al. Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system , 2015, 1504.04723.
[19] A. Algaba,et al. Comment on ‘Šilnikov-type orbits of Lorenz-family systems’ [Physica A 375 (2007) 438–446] , 2013 .
[20] Meichun Zhao,et al. S˘i’lnikov-type orbits of Lorenz-family systems , 2007 .
[21] E. Freire,et al. An exact homoclinic orbit and its connection with the Rössler system , 2015 .
[22] Nikolay V. Kuznetsov,et al. Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.
[23] Gennady A. Leonov,et al. Shilnikov Chaos in Lorenz-like Systems , 2013, Int. J. Bifurc. Chaos.
[24] A. Tamasevicius,et al. Very high and ultrahigh frequency hyperchaotic oscillators with delay line , 2003 .
[25] C. P. Silva,et al. Shil'nikov's theorem-a tutorial , 1993 .
[26] G. Q. Zhong,et al. Circuitry Implementation and Synchronization of Chen's Attractor , 2002, Int. J. Bifurc. Chaos.
[27] Homoclinic orbits for second-order Hamiltonian systems with subquadratic potentials , 2013 .
[28] Gennady A. Leonov,et al. The Tricomi problem on the existence of homoclinic orbits in dissipative systems , 2013 .
[29] A. Algaba,et al. Comment on “Heteroclinic orbits in Chen circuit with time delay” [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3058–3066] , 2012 .
[30] A. Algaba,et al. On Shil’nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System , 2013 .
[31] Guanrong Chen,et al. Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system , 2006 .
[32] C. Tresser,et al. Heteroclinic loops leading to hyperchaos , 1985 .
[33] A. Algaba,et al. Comment on “Existence of heteroclinic orbits of the Shilʼnikov type in a 3D quadratic autonomous chaotic system” [J. Math. Anal. Appl. 315 (2006) 106–119] , 2012 .
[34] Qigui Yang,et al. A new method to find homoclinic and heteroclinic orbits , 2011, Appl. Math. Comput..
[35] H. Ren,et al. Heteroclinic orbits in Chen circuit with time delay , 2010 .
[36] Homoclinic orbits in degenerate reversible-equivariant systems in R6 , 2013 .
[37] Antonio Algaba,et al. Comment on "Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859-11870] , 2014, Appl. Math. Comput..
[39] Guanrong Chen,et al. Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.
[40] Xiao-Song Yang,et al. Horseshoes in modified Chen’s attractors , 2005 .