Existence of Chaos in the Chen System with Linear Time-Delay Feedback

It is mathematically challenging to analytically show that complex dynamical phenomena observed in simulations and experiments are truly chaotic. The Shil’nikov lemma provides a useful theoretical ...

[2]  Celso Grebogi,et al.  Dynamics of delay induced composite multi-scroll attractor and its application in encryption , 2017 .

[3]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[4]  Kathrin Padberg-Gehle,et al.  Nonautonomous control of stable and unstable manifolds in two-dimensional flows , 2013, 1308.1165.

[5]  Guanwei Chen Non-periodic damped vibration systems with sublinear terms at infinity: Infinitely many homoclinic orbits , 2013 .

[6]  Nikolay V. Kuznetsov,et al.  On differences and similarities in the analysis of Lorenz, Chen, and Lu systems , 2014, Appl. Math. Comput..

[7]  Xiaofan Wang,et al.  Generating chaos in Chua's circuit via time-delay feedback , 2001 .

[8]  Y. Y. Chen,et al.  Constructing explicit homoclinic solution of oscillators: An improvement for perturbation procedure based on nonlinear time transformation , 2017, Commun. Nonlinear Sci. Numer. Simul..

[9]  M. T. Yassen,et al.  Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems , 2012, Appl. Math. Comput..

[10]  Kestutis Pyragas,et al.  An electronic analog of the Mackey-Glass system , 1995 .

[11]  Yueheng Lan,et al.  A variational approach to connecting orbits in nonlinear dynamical systems , 2014 .

[12]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[13]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[14]  C. Zhu,et al.  Multiple transverse homoclinic solutions near a degenerate homoclinic orbit , 2015 .

[15]  Valent'in Mendoza,et al.  Minimal topological chaos coexisting with a finite set of homoclinic and periodic orbits , 2016 .

[16]  Manuel Merino,et al.  Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. , 2013, Chaos.

[17]  D. Costa,et al.  On a class of singular second-order Hamiltonian systems with infinitely many homoclinic solutions , 2012, 1211.6779.

[18]  T. N. Mokaev,et al.  Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system , 2015, 1504.04723.

[19]  A. Algaba,et al.  Comment on ‘Šilnikov-type orbits of Lorenz-family systems’ [Physica A 375 (2007) 438–446] , 2013 .

[20]  Meichun Zhao,et al.  S˘i’lnikov-type orbits of Lorenz-family systems , 2007 .

[21]  E. Freire,et al.  An exact homoclinic orbit and its connection with the Rössler system , 2015 .

[22]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[23]  Gennady A. Leonov,et al.  Shilnikov Chaos in Lorenz-like Systems , 2013, Int. J. Bifurc. Chaos.

[24]  A. Tamasevicius,et al.  Very high and ultrahigh frequency hyperchaotic oscillators with delay line , 2003 .

[25]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[26]  G. Q. Zhong,et al.  Circuitry Implementation and Synchronization of Chen's Attractor , 2002, Int. J. Bifurc. Chaos.

[27]  Homoclinic orbits for second-order Hamiltonian systems with subquadratic potentials , 2013 .

[28]  Gennady A. Leonov,et al.  The Tricomi problem on the existence of homoclinic orbits in dissipative systems , 2013 .

[29]  A. Algaba,et al.  Comment on “Heteroclinic orbits in Chen circuit with time delay” [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 3058–3066] , 2012 .

[30]  A. Algaba,et al.  On Shil’nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System , 2013 .

[31]  Guanrong Chen,et al.  Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system , 2006 .

[32]  C. Tresser,et al.  Heteroclinic loops leading to hyperchaos , 1985 .

[33]  A. Algaba,et al.  Comment on “Existence of heteroclinic orbits of the Shilʼnikov type in a 3D quadratic autonomous chaotic system” [J. Math. Anal. Appl. 315 (2006) 106–119] , 2012 .

[34]  Qigui Yang,et al.  A new method to find homoclinic and heteroclinic orbits , 2011, Appl. Math. Comput..

[35]  H. Ren,et al.  Heteroclinic orbits in Chen circuit with time delay , 2010 .

[36]  Homoclinic orbits in degenerate reversible-equivariant systems in R6 , 2013 .

[37]  Antonio Algaba,et al.  Comment on "Existence of heteroclinic and homoclinic orbits in two different chaotic dynamical systems" [Appl. Math. Comput. 218 (2012) 11859-11870] , 2014, Appl. Math. Comput..

[39]  Guanrong Chen,et al.  Chen's Attractor Exists , 2004, Int. J. Bifurc. Chaos.

[40]  Xiao-Song Yang,et al.  Horseshoes in modified Chen’s attractors , 2005 .