LG-Net: Lesion Gate Network for Multiple Sclerosis Lesion Inpainting

[1]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[2]  M. Battaglini,et al.  Evaluating and reducing the impact of white matter lesions on brain volume measurements , 2012, Human brain mapping.

[3]  Stephen M. Smith,et al.  Hidden Markov random field model and segmentation of brain MR images , 2001 .

[4]  Ting-Chun Wang,et al.  Image Inpainting for Irregular Holes Using Partial Convolutions , 2018, ECCV.

[5]  Chenyu Wang,et al.  Multiple Sclerosis Lesion Filling Using a Non-lesion Attention Based Convolutional Network , 2020, ICONIP.

[6]  Ludwig Kappos,et al.  White matter lesion filling improves the accuracy of cortical thickness measurements in multiple sclerosis patients: a longitudinal study , 2014, BMC Neuroscience.

[7]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[8]  Wilkin Chau,et al.  The Talairach coordinate of a point in the MNI space: how to interpret it , 2005, NeuroImage.

[9]  M. Battaglini,et al.  MAGNIMS consensus recommendations on the use of brain and spinal cord atrophy measures in clinical practice , 2020, Nature Reviews Neurology.

[10]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[11]  Adam Finkelstein,et al.  The PatchMatch randomized matching algorithm for image manipulation , 2011, Commun. ACM.

[12]  Thomas Brox,et al.  3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation , 2016, MICCAI.

[13]  H. Wiendl,et al.  Clinical Relevance of Brain Volume Measures in Multiple Sclerosis , 2014, CNS Drugs.

[14]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[15]  Wei Huang,et al.  Rethinking Image Inpainting via a Mutual Encoder-Decoder with Feature Equalizations , 2020, ECCV.

[16]  Sébastien Ourselin,et al.  A multi-time-point modality-agnostic patch-based method for lesion filling in multiple sclerosis , 2016, NeuroImage.