String duality and nonsupersymmetric strings

In recent work Kachru, Kumar, and Silverstein introduced a special class of nonsupersymmetric type II string theories in which the cosmological constant vanishes at the first two orders of perturbation theory. Heuristic arguments suggest the cosmological constant may vanish in these theories to all orders in perturbation theory leading to a flat potential for the dilaton. A slight variant of their model can be described in terms of a dual heterotic theory. The dual theory has a nonzero cosmological constant which is nonperturbative in the coupling of the original type II theory. The dual theory also predicts a mismatch between Bose and Fermi degrees of freedom in the nonperturbative D-brane spectrum of the type II theory.

[1]  S. Kachru,et al.  Vacuum Energy Cancellation in a Non-supersymmetric String , 1998, hep-th/9807076.

[2]  S. Kachru,et al.  4D Conformal Field Theories and Strings on Orbifolds , 1998, hep-th/9802183.

[3]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[4]  M. Dine,et al.  New M-theory Backgrounds with Frozen Moduli , 1997, hep-th/9712166.

[5]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[6]  K. Dienes,et al.  Strong/weak coupling duality relations for non-supersymmetric string theories , 1997, hep-th/9707160.

[7]  K. Dienes,et al.  Duality without supersymmetry: the case of the SO(16) × SO(16) string , 1997, hep-th/9707148.

[8]  O. Bergman,et al.  A Non-Supersymmetric Open String Theory and S-Duality , 1997, hep-th/9701137.

[9]  E. Witten,et al.  Dual string pairs with N = 1 and N = 2 supersymmetry in four dimensions , 1995, hep-th/9507050.

[10]  J. A. Harvey,et al.  Second quantized mirror symmetry , 1995, hep-th/9505162.

[11]  J. A. Harvey,et al.  The heterotic string is a soliton , 1995, hep-th/9504047.

[12]  A. Sen String-string duality conjecture in six dimensions and charged solitonic strings , 1995, hep-th/9504027.

[13]  E. Witten String theory dynamics in various dimensions , 1995, hep-th/9503124.

[14]  D. Kutasov,et al.  Number of degrees of freedom, density of states and tachyons in string theory and CFT , 1991 .

[15]  Bernard Roth,et al.  Modular invariance for interacting bosonic strings at finite temperature , 1987 .

[16]  J. Polchinski Evaluation of the one loop string path integral , 1986 .

[17]  R. Rohm Spontaneous supersymmetry breaking in supersymmetric string theories , 1984 .

[18]  S. Kachru,et al.  Conformal Field Theories and Strings on Orbifolds , 1998 .

[19]  P. Ginsparg,et al.  Toroidal compactification of non-supersymmetric heterotic strings , 1987 .

[20]  F. Wilczek,et al.  Compactification of the Twisted Heterotic String , 1987 .