An augmented LSQR method

The LSQR iterative method for solving least-squares problems may require many iterations to determine an approximate solution with desired accuracy. This often depends on the fact that singular vector components of the solution associated with small singular values of the matrix require many iterations to be determined. Augmentation of Krylov subspaces with harmonic Ritz vectors often makes it possible to determine the singular vectors associated with small singular values with fewer iterations than without augmentation. This paper describes how Krylov subspaces generated by the LSQR iterative method can be conveniently augmented with harmonic Ritz vectors. Computed examples illustrate the competitiveness of the augmented LSQR method proposed.

[1]  Lothar Reichel,et al.  Augmented Implicitly Restarted Lanczos Bidiagonalization Methods , 2005, SIAM J. Sci. Comput..

[2]  R. Morgan Computing Interior Eigenvalues of Large Matrices , 1991 .

[3]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[4]  Ronald B. Morgan,et al.  GMRES with Deflated Restarting , 2002, SIAM J. Sci. Comput..

[5]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[6]  Davod Khojasteh Salkuyeh,et al.  A PRECONDITIONER FOR THE LSQR ALGORITHM , 2008 .

[7]  Michiel E. Hochstenbach,et al.  Harmonic and Refined Extraction Methods for the Singular Value Problem, with Applications in Least Squares Problems , 2004 .

[8]  Jun-Feng Yin,et al.  GMRES Methods for Least Squares Problems , 2010, SIAM J. Matrix Anal. Appl..

[9]  Michael A. Saunders,et al.  LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2010, SIAM J. Sci. Comput..

[10]  Hongyuan Zha,et al.  Low-Rank Matrix Approximation Using the Lanczos Bidiagonalization Process with Applications , 1999, SIAM J. Sci. Comput..

[11]  Å. Björck,et al.  Preconditioners for least squares problems by LU factorization. , 1999 .

[12]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[13]  Zhongxiao Jia,et al.  Some properties of LSQR for large sparse linear least squares problems , 2010, J. Syst. Sci. Complex..

[14]  Qiang Ye,et al.  A generalized LSQR algorithm , 2008, Numer. Linear Algebra Appl..

[15]  Zhongxiao Jia,et al.  An Implicitly Restarted Refined Bidiagonalization Lanczos Method for Computing a Partial Singular Value Decomposition , 2003, SIAM J. Matrix Anal. Appl..

[16]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[17]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[18]  C. Paige Bidiagonalization of Matrices and Solution of Linear Equations , 1974 .

[19]  Lothar Reichel,et al.  An implicitly restarted block Lanczos bidiagonalization method using Leja shifts , 2012 .

[20]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[21]  Efstratios Gallopoulos,et al.  Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization , 2004, Applied Numerical Mathematics.

[22]  R. Larsen Lanczos Bidiagonalization With Partial Reorthogonalization , 1998 .

[23]  Michele Benzi,et al.  A Robust Preconditioner with Low Memory Requirements for Large Sparse Least Squares Problems , 2003, SIAM J. Sci. Comput..

[24]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[25]  Lothar Reichel,et al.  Restarted block Lanczos bidiagonalization methods , 2007, Numerical Algorithms.

[26]  Zhongxiao Jia,et al.  A Refined Harmonic Lanczos Bidiagonalization Method and an Implicitly Restarted Algorithm for Computing the Smallest Singular Triplets of Large Matrices , 2009, SIAM J. Sci. Comput..