Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere

Abstract. In this paper, we present a description of the tropospheric chemistry component of the UK Chemistry and Aerosols (UKCA) model which has been coupled to the Met Office Hadley Centre's HadGEM family of climate models. We assess the model's transport and scavenging processes, in particular focussing on convective transport, boundary layer mixing, wet scavenging and inter-hemispheric exchange. Simulations with UKCA of the short-lived radon tracer suggest that modelled distributions are comparable to those of other models and the comparison with observations indicate that apart from a few locations, boundary layer mixing and convective transport are effective in the model as a means of vertically redistributing surface emissions of radon. Comparisons of modelled lead tracer concentrations with observations suggest that UKCA captures surface concentrations in both hemispheres very well, although there is a tendency to underestimate the observed geographical and interannual variability in the Northern Hemisphere. In particular, UKCA replicates the shape and absolute concentrations of observed lead profiles, a key test in the evaluation of a model's wet scavenging scheme. The timescale for inter-hemispheric transport, calculated in the model using a simple krypton tracer experiment, does appear to be long relative to other models and could indicate deficiencies in tropical deep convection and/or insufficient boundary layer mixing. We also describe the main components of the tropospheric chemistry and evaluate it against observations and other tropospheric chemistry models. In particular, from a climate forcing perspective, present-day observed surface methane concentrations and tropospheric ozone concentrations are reproduced very well by the model, thereby making it suitable for long centennial integrations as well as studies of biogeochemical feedbacks. Results from both historical and future simulations with UKCA tropospheric chemistry are presented. Future projections of tropospheric ozone vary with the Representative Concentration Pathway (RCP). In RCP2.6, for example, tropospheric ozone increases up to 2010 and then declines by 13% of its year-2000 global mean by the end of the century. In RCP8.5, tropospheric ozone continues to rise steadily throughout the 21st century, with methane being the main driving factor. Finally, we highlight aspects of the UKCA model which are undergoing and/or have undergone recent developments and are suitable for inclusion in a next-generation Earth System Model.

[1]  John P. Burrows,et al.  Using GOME NO 2 satellite data to examine regional differences in TOMCAT model performance , 2004 .

[2]  W. Broecker,et al.  Radium-226 and Radon-222: Concentration in Atlantic and Pacific Oceans , 1967, Science.

[3]  E. Browell,et al.  Distributions of Beryllium 7 and Lead 210, and Soluble Aerosol-Associated Ionic Species Over the Western Pacific: PEM West B , 1997 .

[4]  T. Hinton,et al.  The Climatology of the Middle Atmosphere in a Vertically Extended Version of the Met Office’s Climate Model. Part II: Variability , 2010 .

[5]  R. McKenzie,et al.  Changes in biologically active ultraviolet radiation reaching the Earth's surface. , 1998, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[6]  A. Ravishankara,et al.  Redetermination of the rate coefficient for the reaction of O(1D) with N2 , 2002 .

[7]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[8]  M. Jenkin,et al.  Hydrocarbons and the long-range transport of ozone and pan across Europe , 1991 .

[9]  Jean-Francois Lamarque,et al.  Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes , 2008 .

[10]  P. Crutzen,et al.  A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model evaluation of ozone-related species , 2003 .

[11]  J. Corbett,et al.  Transport impacts on atmosphere and climate: Shipping , 2010 .

[12]  Per Olaf Brett,et al.  A historical reconstruction of ships' fuel consumption and emissions , 2007 .

[13]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[14]  M. Hoerling,et al.  A global analysis of stratospheric-tropospheric exchange during northern winter , 1993 .

[15]  R. Prinn,et al.  Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model , 2006 .

[16]  François Dulac,et al.  Wet deposition in a global size-dependent aerosol transport model: 1. Comparison of a 1 year 210Pb simulation with ground measurements , 1998 .

[17]  D. Schimel,et al.  Atmospheric Chemistry and Greenhouse Gases , 1999 .

[18]  D. Jacob Heterogeneous chemistry and tropospheric ozone , 2000 .

[19]  David M. Rider,et al.  Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite , 2001 .

[20]  H. Schlager,et al.  Introduction to special section: Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) and Pollution From Aircraft Emissions in the North Atlantic Flight Corridor (POLINAT 2) , 2000 .

[21]  D. Davis,et al.  Pacific Exploratory Mission‐West A (PEM‐West A): September–October 1991 , 1996 .

[22]  A. Archibald,et al.  An Isoprene Mechanism Intercomparison , 2010 .

[23]  Sander Houweling,et al.  The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry , 1998 .

[24]  Oliver Wild,et al.  Modelling the global tropospheric ozone budget: exploring the variability in current models , 2007 .

[25]  Paul J. Crutzen,et al.  Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NO x , O3, and OH , 1993 .

[26]  Olaf Morgenstern,et al.  Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model , 2007 .

[27]  J. Pyle,et al.  Changes in tropospheric ozone between 2000 and 2100 modeled in a chemistry‐climate model , 2003 .

[28]  Yuhang Wang,et al.  Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons , 1998 .

[29]  D. Rind,et al.  Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy , 1993 .

[30]  K. Sudo,et al.  CHASER: A global chemical model of the troposphere 2. Model results and evaluation , 2002 .

[31]  D. Stevenson,et al.  A comparison of two schemes for the convective transport of chemical species in a Lagrangian global chemistry model , 2002 .

[32]  H. Kelder,et al.  An ozone climatology based on ozonesonde and satellite measurements , 1998 .

[33]  J. Fishman,et al.  NASA GTE TRACE A experiment (September–October 1992): Overview , 1996 .

[34]  P. M. Lang,et al.  Molecular hydrogen in the troposphere: Global distribution and budget , 1999 .

[35]  J. A. Pyle,et al.  A two‐dimensional mean circulation model for the atmosphere below 80km , 1975 .

[36]  C. Jones,et al.  Effect of Climate Change on Isoprene Emissions and Surface Ozone Levels , 2003 .

[37]  Paul J. Crutzen,et al.  A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results , 2003 .

[38]  M. Pilling,et al.  European Geosciences Union 2002 Atmospheric Chemistry and Physics Discussions Protocol for the development of the Master Chemical Mechanism , MCM v 3 ( Part B ) : tropospheric degradation of aromatic volatile organic compounds , 2002 .

[39]  C. McLinden,et al.  Stratospheric N2O–NO y system: Testing uncertainties in a three‐dimensional framework , 2001 .

[40]  R. A. Cox,et al.  Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement VIII, Halogen Species Evaluation for Atmospheric Chemistry , 2000 .

[41]  R. Stolarski,et al.  Changes in Column Ozone Correlated with the Stratospheric EP Flux , 2002 .

[42]  P. Rasch,et al.  MOZART, a global chemical transport model for ozone , 1998 .

[43]  Oliver Wild,et al.  Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models , 2000 .

[44]  B. Josse,et al.  Radon global simulations with the multiscale chemistry and transport model MOCAGE , 2004 .

[45]  J. Pyle,et al.  Influence of El Niño Southern Oscillation on stratosphere/troposphere exchange and the global tropospheric ozone budget , 2005 .

[46]  Karl K. Turekian,et al.  Geochemistry of atmospheric radon and radon products , 1977 .

[47]  K. Emmerson,et al.  Comparison of tropospheric gas-phase chemistry schemes for use within global models , 2009 .

[48]  Mark Lawrence,et al.  The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere , 2006 .

[49]  Miguel Ángel Martínez,et al.  Atmospheric oxidation capacity sustained by a tropical forest , 2008, Nature.

[50]  David W. Fahey,et al.  An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere , 1994 .

[51]  P. Braesicke,et al.  Changing ozone and changing circulation in northern mid‐latitudes: Possible feedbacks? , 2003 .

[52]  O. Wild,et al.  Excitation of the primary tropospheric chemical mode in a global three-dimensional model , 2000 .

[53]  Asgeir Sorteberg,et al.  Two parametrizations of the dry deposition exchange for SO2 and NH3 in a numerical model , 1996 .

[54]  John A. Pyle,et al.  Modeling trace gas budgets in the troposphere: 1. Ozone and odd nitrogen , 1993 .

[55]  Stuart Webster,et al.  Improvements to the representation of orography in the Met Office Unified Model , 2003 .

[56]  Richard B. Rood,et al.  Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm , 1996 .

[57]  S. Ghan,et al.  A global-scale Lagrangian trace species model of transport, transformation, and removal processes , 1988 .

[58]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[59]  E. Fleming,et al.  Two-dimensional model simulations of the QBO in ozone and tracers in the tropical stratosphere , 2002 .

[60]  Louisa Emmons,et al.  Contribution of isoprene to chemical budgets: A model tracer study with the NCAR CTM MOZART-4 , 2008 .

[61]  D. Hauglustaine,et al.  Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere , 2005 .

[62]  David John Lary,et al.  Diffuse radiation, twilight, and photochemistry — I , 1991 .

[63]  M. Kritz,et al.  Validation of an off‐line three‐dimensional chemical transport model using observed radon profiles: 1. Observations , 1998 .

[64]  D. Rind,et al.  A simple lightning parameterization for calculating global lightning distributions , 1992 .

[65]  Thomas Reichler,et al.  Analysis and Reduction of Systematic Errors through a Seamless Approach to Modeling Weather and Climate , 2010 .

[66]  I. Fung,et al.  Mechanisms of convection-induced modulation of passive tracer interhemispheric transport interannual variability , 2004 .

[67]  N. Preiss,et al.  A compilation of data on lead 210 concentration in surface air and fluxes at the air‐surface and water‐sediment interfaces , 1996 .

[68]  D. Rind,et al.  Modeling Global Lightning Distributions in a General Circulation Model , 1994 .

[69]  E. Browell,et al.  Validation of Tropospheric Emission Spectrometer ozone profiles with aircraft observations during the Intercontinental Chemical Transport Experiment–B , 2008 .

[70]  H. Sartorius,et al.  Large‐scale atmospheric mixing derived from meridional profiles of krypton 85 , 1983 .

[71]  Oliver Wild,et al.  The ASAD atmospheric chemistry integration package and chemical reaction database , 1997 .

[72]  D. Jacob,et al.  Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH , 2005, Geophysical Research Letters.

[73]  J. Lamarque,et al.  Multimodel ensemble simulations of present-day and near-future tropospheric ozone , 2006 .

[74]  Martyn P. Chipperfield,et al.  Validation of an off‐line three‐dimensional chemical transport model using observed radon profiles: 2. Model results , 1998 .

[75]  J. Corbett,et al.  Updated emissions from ocean shipping , 2003 .

[76]  Hal Westberg,et al.  A biogenic hydrocarbon emission inventory for the U.S.A. using a simple forest canopy model , 1993 .

[77]  S. Mckeen,et al.  Radon 222 simulations as a test of a three‐dimensional regional transport model , 1996 .

[78]  Jos Lelieveld,et al.  Tropospheric ozone simulation with a chemistry-general circulation model: Influence of higher hydrocarbon chemistry , 2000 .

[79]  C. Genthon,et al.  Use of a new database of lead 210 for global aerosol model validation , 1997 .

[80]  S. Pawson,et al.  Use of radon for evaluation of atmospheric transport models: sensitivity to emissions , 2004 .

[81]  M. Mozurkewich,et al.  Peroxynitric Acid Decay Mechanisms and Kinetics at Low pH , 1997 .

[82]  Pierre Friedlingstein,et al.  Three-dimensional transport and concentration of SF6. A model intercomparison study (TransCom 2) , 1999 .

[83]  Trevor Davies,et al.  An Overview of Numerical Methods for the Next Generation U.K. NWP and Climate Model , 1997 .

[84]  J. Bradshaw,et al.  Asian influence over the western North Pacific during the fall season: Inferences from lead 210, soluble ionic species and ozone , 1996 .

[85]  T. Shepherd,et al.  Overview of the New CCMVal reference and sensitivity simulations in support of upcoming ozone and climate assessments and the planned SPARC CCMVal report , 2008 .

[86]  A. Arneth,et al.  The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections , 2008 .

[87]  A. Jeuken,et al.  Simulation of the transport of Rn222 using on‐line and off‐line global models at different horizontal resolutions: a detailed comparison with measurements, , 1999 .

[88]  R. Derwent,et al.  Atmospheric Chemistry and Physics Protocol for the Development of the Master Chemical Mechanism, Mcm V3 (part B): Tropospheric Degradation of Aromatic Volatile Organic Compounds , 2022 .

[89]  David Rind,et al.  Chemistry of the Global Troposphere' Fluorocarbons as Tracers of Air Motion , 2007 .

[90]  Adam A. Scaife,et al.  Quasi‐biennial oscillation in ozone in a coupled chemistry‐climate model , 2003 .

[91]  P. Braesicke,et al.  Interannual variability of tropospheric composition: the influence of changes in emissions, meteorology and clouds , 2009 .

[92]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[93]  W. C. Graustein,et al.  Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb , 1993 .

[94]  Rolando R. Garcia,et al.  Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations , 2004 .

[95]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[96]  R. Neale,et al.  Improvements in a half degree atmosphere/land version of the CCSM , 2010 .

[97]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[98]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[99]  Richard G. Derwent,et al.  Multimodel simulations of carbon monoxide: Comparison with observations and projected near‐future changes , 2006 .

[100]  D. Hartley,et al.  Mechanistic analysis of interhemispheric transport , 1995 .

[101]  H. Kohguchi,et al.  Direct determination of the rate coefficient for the reaction of O(D-1) with OCS , 2009 .

[102]  J. Lelieveld,et al.  Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign , 2008 .

[103]  P. Crutzen,et al.  Sensitivities in global scale modeling of isoprene , 2003 .

[104]  H. Levy,et al.  Empirical model of global soil‐biogenic NOχ emissions , 1995 .

[105]  C. McLinden,et al.  Stratospheric N20-NOs system' Testing uncertainties , 2001 .

[106]  H. Worden,et al.  Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles , 2008 .

[107]  Russell K. Monson,et al.  Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes) , 2008 .

[108]  Richard S. Stolarski,et al.  Search for evidence of trend slow-down in the long-term TOMS/SBUV total ozone data record: the importance of instrument drift uncertainty , 2006 .

[109]  D. Jacob,et al.  Export of reactive nitrogen from North America during summertime: Sensitivity to hydrocarbon chemistry , 1998 .

[110]  Thomas Kaminski,et al.  Inverse modeling of methane sources and sinks using the adjoint of a global transport model , 1999 .

[111]  P. Crutzen,et al.  Development and Intercomparison of Condensed Isoprene Oxidation Mechanisms for Global Atmospheric Modeling , 2000 .

[112]  Nadine Unger,et al.  Improved Attribution of Climate Forcing to Emissions , 2009, Science.

[113]  J. Lerner,et al.  Use of on-line tracers as a diagnostic tool in general circulation model development 1. Horizontal and vertical transport in the troposphere , 1996 .

[114]  Hongwoo Park,et al.  The Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) experiment , 1978 .

[115]  V. L. Orkin,et al.  Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation No. 14 (JPL Publication 02-25) , 2003 .

[116]  Casper Labuschagne,et al.  Saturation of the Southern Ocean CO2 Sink Due to Recent Climate Change , 2007, Science.

[117]  Michel Crucifix,et al.  The new hadley centre climate model (HadGEM1) : Evaluation of coupled simulations , 2006 .

[118]  J. Lelieveld,et al.  Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. , 1995 .

[119]  L. Oman,et al.  Impacts of climate change on stratospheric ozone recovery , 2009 .

[120]  M. Prather,et al.  Fast-J2: Accurate Simulation of Stratospheric Photolysis in Global Chemical Models , 2002 .

[121]  Richard Swinbank,et al.  Impact of a Spectral Gravity Wave Parameterization on the Stratosphere in the Met Office Unified Model , 2002 .

[122]  D. R. Hanson,et al.  Measurement of hydroxyl and hydroperoxy radical uptake coefficients on water and sulfuric acid surfaces , 1992 .

[123]  Toshihiro Ogawa,et al.  Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 2. Tropospheric variability and the zonal wave-one , 2003 .

[124]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[125]  Paul J. Crutzen,et al.  Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea , 1996 .

[126]  Martyn P. Chipperfield,et al.  Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers , 1997 .

[127]  G. Brasseur,et al.  IMAGES: A three‐dimensional chemical transport model of the global troposphere , 1995 .

[128]  P. Ciais,et al.  Transport of 222Rn using the regional model REMO: a detailed comparison with measurements over Europe , 2002 .

[129]  E. Browell,et al.  Distributions of beryllium 7 and lead 210, and soluble aerosol-associated ionic species over the western Pacific: PEM West B, February-March 1994 , 2018 .

[130]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[131]  J. Penner,et al.  NOx from lightning 2. Constraints from the global atmospheric electric circuit , 1997 .

[132]  T. L. Thompson,et al.  Chlorine activation near the midlatitude tropopause , 2007 .

[133]  Paul J. Crutzen,et al.  The role of clouds in tropospheric photochemistry , 1991 .

[134]  A. Priestley A Quasi-Conservative Version of the Semi-Lagrangian Advection Scheme , 1993 .

[135]  R. Derwent,et al.  World wide web site of a master chemical mechanism (MCM) for use in tropospheric chemistry models , 1997 .

[136]  P. M. Lang,et al.  Observational constraints on recent increases in the atmospheric CH4 burden , 2009 .

[137]  P. Nédélec,et al.  Experimental Determinations of Meridional Distribution and Long Term Evolution of Tropospheric Ozone — Consequences on Radiative Forcing , 1995 .

[138]  Interactions between tropospheric chemistry and climate model temperature and humidity biases , 2009 .

[139]  K. Carslaw,et al.  Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere , 2007 .

[140]  B. Heikes,et al.  Henry's Law Constant Determinations for Hydrogen Peroxide, Methyl Hydroperoxide, Hydroxymethyl Hydroperoxide, Ethyl Hydroperoxide, and Peroxyacetic Acid , 1996 .

[141]  D. Jacob,et al.  Pacific Exploratory Mission in the Tropical Pacific: PEM-Tropics B, March-April 1999 , 2001 .

[142]  Axel Lauer,et al.  Emissions from international shipping: 1. The last 50 years , 2005 .

[143]  G. Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology , 2006 .

[144]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[145]  Martyn P. Chipperfield,et al.  Validation and intercomparison of wet and dry deposition schemes using 210Pb in a global three‐dimensional off‐line chemical transport model , 1999 .

[146]  D. Stevenson,et al.  Role of climate feedback on methane and ozone studied with a Coupled Ocean‐Atmosphere‐Chemistry Model , 2001 .

[147]  T. Clarmann,et al.  Atmospheric Chemistry and Physics Global distribution of mean age of stratospheric air from MIPAS , 2022 .

[148]  S. Ghan,et al.  Tropospheric nitrogen: A three‐dimensional study of sources, distributions, and deposition , 1991 .

[149]  M. Chipperfield,et al.  Model sensitivity studies of Arctic ozone depletion , 1998 .

[150]  C. Huntingford,et al.  Indirect radiative forcing of climate change through ozone effects on the land-carbon sink , 2007, Nature.

[151]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[152]  D. Rind,et al.  What determines the cloud-to-ground lightning fraction in thunderstorms? , 1993 .

[153]  P. Braesicke,et al.  The World Avoided by the Montreal Protocol , 2008 .

[154]  M. Ashmore Assessing the future global impacts of ozone on vegetation , 2005 .

[155]  Mark Lawrence,et al.  A model for studies of tropospheric photochemistry: Description, global distributions, and evaluation , 1999 .

[156]  D. Stevenson,et al.  Relative roles of climate and emissions changes on future tropospheric oxidant concentrations , 1999 .

[157]  Gjermund Gravir,et al.  Emission from international sea transportation and environmental impact , 2003 .

[158]  Bernd Kromer,et al.  Atmospheric 222Rn measurements during the 1993 NARE Intensive , 1996 .

[159]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[160]  R. A. Cox,et al.  Atmospheric chemistry of small organic peroxy radicals , 2001 .

[161]  Mark Lawrence,et al.  Interhemispheric di ff erences in the chemical characteristics of the Indian Ocean aerosol during INDOEX , 2002 .

[162]  P. J. Rasch,et al.  A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995 , 2000 .

[163]  P. Rowntree,et al.  A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure , 1990 .

[164]  Jean-Francois Lamarque,et al.  Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation: INTERACTIVE CHEMISTRY IN LMDZ , 2004 .

[165]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[166]  D. Stevenson,et al.  Tropospheric Ozone in a Global-Scale Three-Dimensional Lagrangian Model and Its Response to NOX Emission Controls , 1997 .

[167]  R. Betts,et al.  Stomatal conductance changes due to increasing carbon dioxide levels: Projected impact on surface ozone levels , 2007 .

[168]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[169]  Clouds, photolysis and regional tropospheric ozone budgets. , 2009 .

[170]  Martyn P. Chipperfield,et al.  Multiannual simulations with a three‐dimensional chemical transport model , 1999 .

[171]  R. A. Cox,et al.  Tropospheric bromine chemistry and its impacts on ozone: A model study , 2005 .

[172]  P. Wiesen,et al.  Solubility of Nitrous Acid (HONO) in Sulfuric Acid Solutions , 1996 .

[173]  J. B. Kumer,et al.  CLAES CH4, N2O and CCL2F2 (F12) global data. [Cryogenic Array Etalon Spectrometer , 1993 .

[174]  H. Levy Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted , 1971, Science.

[175]  Rolando R. Garcia,et al.  Simulation of secular trends in the middle atmosphere, 1950–2003 , 2007 .

[176]  J. Christensen,et al.  Test of two numerical schemes for use in atmospheric transport-chemistry models , 1993 .

[177]  Donald J. Wuebbles,et al.  Radiative Forcing of Climate Changes in the Vertical Distribution of Ozone , 1990 .

[178]  J. Lerner,et al.  Three‐dimensional model synthesis of the global methane cycle , 1991 .

[179]  Timothy M. Hall,et al.  Evaluation of transport in stratospheric models , 1999 .

[180]  J. Penner,et al.  Global atmospheric chemistry: Integrating over fractional cloud cover , 2007 .

[181]  Michael B. McElroy,et al.  A 3‐D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997 , 2004 .

[182]  D. Stevenson,et al.  Test of a northwards-decreasing 222Rn source term by comparison of modelled and observed atmospheric 222Rn concentrations , 2005 .

[183]  D. Shallcross,et al.  A modelling study of tropospheric distributions of the trace gases CFCl3 and CH3CCl3 in the 1980s , 2000 .

[184]  Ulrike Langematz,et al.  Update on the global ozone climatology and on concurrent ozone and temperature trends , 1995, Remote Sensing.

[185]  Y. Balkanski,et al.  Wet deposition in a global size-dependent aerosol transport model. 2. Influence of the scavenging scheme on 210Pb vertical profiles, surface concentrations, and deposition , 1998 .

[186]  G. Faluvegi,et al.  Atmospheric Chemistry and Physics , 2003 .

[187]  Jeremy Firestone,et al.  Improving spatial representation of global ship emissions inventories. , 2008, Environmental science & technology.

[188]  D. Jacob,et al.  Uncertainty in preindustrial abundance of tropospheric ozone: Implications for radiative forcing calculations , 2001 .

[189]  D. Hauglustaine,et al.  Data composites of airborne observations of tropospheric ozone and its precursors , 2000 .

[190]  I. Levin,et al.  Refining of atmospheric transport model entries by the globally observed passive tracer distributions of 85krypton and sulfur hexafluoride (SF6) , 1996 .

[191]  F. Conen,et al.  Latitudinal distribution of radon-222 flux from continents , 2002 .

[192]  David W. J. Thompson,et al.  Interpretation of Recent Southern Hemisphere Climate Change , 2002, Science.

[193]  R. Dickinson,et al.  Couplings between changes in the climate system and biogeochemistry , 2007 .

[194]  P. Roberts,et al.  A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions. , 2001, Chemosphere.

[195]  Mark A. Sutton,et al.  Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs , 2000 .

[196]  Michael J. Pilling,et al.  Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons , 2004 .

[197]  Volker Grewe,et al.  Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past , 2006 .

[198]  Intercomparison and evaluation of atmospheric transport in a Lagrangian model (STOCHEM), and an Eulerian model (UM), using 222Rn as a short‐lived tracer , 1998 .

[199]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[200]  John A. Pyle,et al.  Impact of climate change on tropospheric ozone and its global budgets , 2007 .

[201]  J. A. Pyle,et al.  Geoscientific Model Development Evaluation of the new UKCA climate-composition model – Part 1 : The stratosphere , 2009 .

[202]  P. M. Lang,et al.  Atmospheric methane levels off: Temporary pause or a new steady‐state? , 2003 .

[203]  W. Collins,et al.  Present and future acid deposition to ecosystems: The effect of climate change , 2006 .

[204]  D. Waugh Atmospheric dynamics: The age of stratospheric air , 2009 .

[205]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[206]  Dudley E. Shallcross,et al.  Evaluation of modeled O3 using Measurement of Ozone by Airbus In‐Service Aircraft (MOZAIC) data , 1998 .

[207]  B. Naujokat,et al.  An Update of the Observed Quasi-Biennial Oscillation of the Stratospheric Winds over the Tropics , 1986 .