Quasi-Cyclic Constructions of Quantum Codes

We give sufficient conditions for self-orthogonality with respect to symplectic, Euclidean and Hermitian inner products of a wide family of quasi-cyclic codes of index two. We provide lower bounds for the symplectic weight and the minimum distance of the involved codes. Supported in the previous results, we show algebraic constructions of good quantum codes and determine their parameters.

[1]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[2]  R. Matsumoto,et al.  Constructing Quantum Error-Correcting Codes for pm-State System from Classical Error-Correcting Codes , 1999, quant-ph/9911011.

[3]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Rudolf Lide,et al.  Finite fields , 1983 .

[6]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[7]  S. Litsyn,et al.  Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.

[8]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[9]  Tor Helleseth,et al.  On the covering radius of cyclic linear codes and arithmetic codes , 1985, Discret. Appl. Math..

[10]  Hideki Imai,et al.  Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[11]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[12]  Zhi Ma,et al.  A finite Gilbert-Varshamov bound for pure stabilizer quantum codes , 2004, IEEE Transactions on Information Theory.

[13]  Patrick Solé,et al.  Good self-dual quasi-cyclic codes exist , 2003, IEEE Trans. Inf. Theory.

[14]  植松 友彦,et al.  Constructing Quantum Error-Correcting Codes for p^m-State Systems from Classical Error-Correcting Codes , 2000 .

[15]  Xinmei Wang,et al.  QUANTUM ERROR-CORRECTING CODES FROM QUASI-CYCLIC CODES , 2008 .

[16]  Chaoping Xing,et al.  Generalization of Steane's Enlargement Construction of Quantum Codes and Applications , 2010, IEEE Transactions on Information Theory.

[17]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[18]  Patrick Fitzpatrick,et al.  Algebraic structure of quasicyclic codes , 2001, Discret. Appl. Math..

[19]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[20]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  Davide Castelvecchi,et al.  Quantum computers ready to leap out of the lab in 2017 , 2017, Nature.

[22]  Tadao Kasami A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2 (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[23]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  Hideki Imai,et al.  Spatially coupled quasi-cyclic quantum LDPC codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[25]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[26]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[27]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.