Learning Alignments and Leveraging Natural Logic

We describe an approach to textual inference that improves alignments at both the typed dependency level and at a deeper semantic level. We present a machine learning approach to alignment scoring, a stochastic search procedure, and a new tool that finds deeper semantic alignments, allowing rapid development of semantic features over the aligned graphs. Further, we describe a complementary semantic component based on natural logic, which shows an added gain of 3.13% accuracy on the RTE3 test set.