In-Situ, Real-Time Investigation of the Formation of Oxygen-Containing Rare-Earth Hydrides by Combining a Quartz Crystal Microbalance and Ion Beam Analysis

[1]  D. Primetzhofer,et al.  Ion beam tools for nondestructive in-situ and in-operando composition analysis and modification of materials at the Tandem Laboratory in Uppsala , 2022, Journal of Instrumentation.

[2]  D. Primetzhofer,et al.  Environmental dependence of the photochromic effect of oxygen-containing rare-earth metal hydrides , 2021 .

[3]  D. V. Rao,et al.  A density functional theory and neutron diffraction study of the ambient condition properties of sub-stoichiometric yttrium hydride , 2021 .

[4]  H. Koslowski,et al.  A high temperature dual-mode quartz crystal microbalance technique for erosion and thermal desorption spectroscopy measurements. , 2020, The Review of scientific instruments.

[5]  D. Primetzhofer,et al.  Synthesis and in-situ characterization of photochromic yttrium oxyhydride grown by reactive e−-beam evaporation , 2020 .

[6]  D. Primetzhofer,et al.  Correlating chemical composition and optical properties of photochromic rare-earth oxyhydrides using ion beam analysis , 2020, 2004.07082.

[7]  D. Primetzhofer,et al.  SIGMA: A Set-up for In-situ Growth, Material modification and Analysis by ion beams , 2020 .

[8]  S. Karazhanov,et al.  Light-induced breathing in photochromic yttrium oxyhydrides , 2019, Physical Review Materials.

[9]  R. Heller,et al.  Oxyhydride Nature of Rare-Earth-Based Photochromic Thin Films , 2019, The journal of physical chemistry letters.

[10]  D. Primetzhofer,et al.  Yttrium oxyhydrides for photochromic applications: Correlating composition and optical response , 2018, Physical Review Materials.

[11]  H. Schreuders,et al.  Photochromism of rare-earth metal-oxy-hydrides , 2017 .

[12]  D. Primetzhofer,et al.  Enhanced photochromic response in oxygen-containing yttrium hydride thin films transformed by an oxidation process , 2017 .

[13]  D. Primetzhofer,et al.  Composition of photochromic oxygen-containing yttrium hydride films , 2017 .

[14]  A. F. Gurbich,et al.  SigmaCalc recent development and present status of the evaluated cross-sections for IBA , 2016 .

[15]  J. Mæhlen,et al.  Dynamic reactive sputtering of photochromic yttrium hydride thin films , 2015 .

[16]  E. Marstein,et al.  A new thin film photochromic material: Oxygen-containing yttrium hydride , 2011, 1109.2872.

[17]  A. Holt,et al.  Transparent yttrium hydride thin films prepared by reactive sputtering , 2011, 1102.0450.

[18]  F. Aumayr,et al.  A quartz-crystal-microbalance technique to investigate ion-induced erosion of fusion relevant surfaces , 2009 .

[19]  F. Aumayr,et al.  A highly sensitive quartz-crystal microbalance for sputtering investigations in slow ion–surface collisions , 1999 .

[20]  M. Mayer SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA , 1999 .

[21]  J. Oder,et al.  Cross sections for 170.5 ° backscattering of 4He from carbon for 4He energies between 1.6 and 5.0 MeV , 1989 .

[22]  H. F. Tiersten,et al.  An analysis of doubly rotated quartz resonators utilizing essentially thickness modes with transverse variation , 1986 .

[23]  G. Sauerbrey Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung , 1959 .

[24]  D. Primetzhofer,et al.  Oxygen mobility in yttrium hydride films studied by isotopic labelling , 2022, EPJ Web of Conferences.