Linelist of HD16O for study of atmosphere of terrestrial planets (Earth, Venus and Mars)

Abstract Studies of water vapor in the atmospheres of Venus, Mars and Earth by spectroscopic techniques are being made routinely with different instruments on board of interplanetary missions like Mars-Express, Venus-Express and many others as well as with a lot of spacecrafts on the Earth’ orbit. Accessibility of detailed spectroscopic information in a wide range is then of crucial importance to retrieve reliable results with these instruments. Unlike Earth, Mars and Venus have the CO 2 -rich planetary atmospheres that require line shape parameters for HDO–CO 2 broadening. In this paper a new linelist for HD 16 O is presented. This linelist covers the range of 0.00065–25,660 cm −1 and is significantly more complete than other databases presently available. All lines with intensities (for 100% abundance) greater than 10 −30  cm/molecule at 296 K are included. Wavenumbers for 43% (about 300,000) of all lines were evaluated at a level of the best experimental accuracy. For each transition the line shape parameters such as halfwidth and temperature exponent are provided for the case of HDO–air, HDO–HDO, and HDO–CO 2 broadening. The final linelist contains more than 700,000 HD 16 O lines and is presented in HITRAN-compatible format.

[1]  J. Tennyson,et al.  Intracavity laser absorption spectroscopy of HDO between 12145 and 13160 cm 1 , 2007 .

[2]  P. Bernath,et al.  IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor. Part II. Energy Levels and Transition Wavenumbers for HD16O, HD17O, and HD18O , 2010 .

[3]  Jonathan Tennyson,et al.  MARVEL: measured active rotational-vibrational energy levels , 2007 .

[4]  V. Saveliev,et al.  Half-width temperature dependence of nitrogen broadened lines in the ν2 band of H2O , 2004 .

[5]  David Crisp,et al.  Water in the deep atmosphere of Venus from high-resolution spectra of the night side , 1995 .

[6]  R. Tolchenov,et al.  A new ab initio ground-state dipole moment surface for the water molecule. , 2008, The Journal of chemical physics.

[7]  N. Iwagami,et al.  Latitudinal distribution of HDO abundance above Venus' clouds by ground-based 2.3μm spectroscopy , 2012 .

[8]  M. Richardson,et al.  Seasonal variation of aerosols in the Martian atmosphere , 2000 .

[9]  Harry Partridge,et al.  Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities , 2000 .

[10]  S. Tashkun,et al.  CDSD-1000, the high-temperature carbon dioxide spectroscopic databank , 2003 .

[11]  Jonathan Tennyson,et al.  HITEMP, the high-temperature molecular spectroscopic database , 2010 .

[12]  J. P. Dubois,et al.  A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO , 2007, Nature.

[13]  J. Lamouroux,et al.  Half-widths, their temperature dependence, and line shifts for the HDO–CO2 collision system for applications to CO2-rich planetary atmospheres , 2011 .

[14]  Robert R. Gamache,et al.  CO2-broadening of water-vapor lines , 1995 .

[15]  R. Wilson,et al.  Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model , 2002 .

[16]  R. Tolchenov,et al.  A high accuracy computed line list for the HDO molecule , 2010 .

[17]  I. L. Barnes,et al.  Isotopic abundances and atomic weights of the elements , 1984 .

[18]  J. Tennyson,et al.  Line lists for H218O and H217O based on empirical line positions and ab initio intensities , 2012 .

[19]  N. Lavrentieva Rotational dependence of the broadening of lines of the ν2 band of H2O induced by nitrogen pressure , 2004 .

[20]  Ronald K. Hanson,et al.  Temperature-Dependent Collision-Broadening Parameters of H2O Lines in the 1.4-μm Region Using Diode Laser Absorption Spectroscopy , 1994 .

[21]  P. Bernath,et al.  IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers for H217O and H218O , 2009 .

[22]  Anna Fedorova,et al.  The 1.10- and 1.18-μm nightside windows of Venus observed by SPICAV-IR aboard Venus Express , 2011 .

[23]  Robert R. Gamache,et al.  CO2-broadened water in the pure rotation and ν2 fundamental regions , 2007 .

[24]  R. Tolchenov,et al.  Potential energy surface of HDO up to 25,000 cm-1. , 2008, The Journal of chemical physics.

[25]  T. Owen,et al.  Deuterium on Venus: Observations From Earth , 1991, Science.

[26]  P. Anderson Pressure Broadening in the Microwave and Infra-Red Regions , 1949 .

[27]  F. Forget,et al.  Modeling the annual cycle of HDO in the Martian atmosphere , 2005 .

[28]  Laurence S. Rothman,et al.  Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database , 2006 .

[29]  A. D. Jong,et al.  Wide-band simultaneous observations of pulsars: disentangling dispersion measure and profile variations , 2012, Astronomy & Astrophysics.

[30]  Jonathan Tennyson,et al.  DVR3D: a program suite for the calculation of rotation-vibration spectra of triatomic molecules , 2004, Comput. Phys. Commun..

[31]  Harry Partridge,et al.  The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data , 1997 .

[32]  R. Tolchenov,et al.  Shift of the centers of H2O absorption lines in the region of 1.06 μm , 2008 .

[33]  J. Hartmann,et al.  Calculated tabulations of H(2)O line broadening by H(2)O, N(2), O(2), and CO(2) at high temperature. , 1989, Applied optics.

[34]  Deuterated water: partition functions and equilibrium constants , 2005 .

[35]  O. Naumenko,et al.  CW-Cavity Ring Down Spectroscopy of deuterated water in the 1.58 μm atmospheric transparency window , 2014 .

[36]  V. Krasnopolsky Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS, and SO2 at the cloud tops , 2010 .

[37]  N. Lavrentieva,et al.  Nitrogen and oxygen broadening of ozone infrared lines in the 5µm region: theoretical predictions by semiclassical and semiempirical methods , 2009 .

[38]  Eric Villard,et al.  HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express , 2008 .

[39]  Yu. N. Ponomarev,et al.  Pressure broadening and shift coefficients of H2O due to perturbation by N2, O2, H2 and He in the 1.39 μm region: experiment and calculations , 2004 .

[40]  A. Watson,et al.  Venus Was Wet: A Measurement of the Ratio of Deuterium to Hydrogen , 1982, Science.

[41]  V. Krasnopolsky,et al.  Oxygen and carbon isotope ratios in the martian atmosphere , 2007 .

[42]  J. Tennyson,et al.  A high-accuracy computed water line list , 2006, astro-ph/0601236.

[43]  Adrian A. Borsa,et al.  Modeling the topography of the salar de Uyuni, Bolivia, as an equipotential surface of Earth's gravity field , 2008 .

[44]  V. I. Starikov,et al.  Self- and air-broadening coefficients of HD16O spectral lines , 2012 .

[45]  Laurence S. Rothman,et al.  Observations of D/H ratios in H2O, HCl, and HF on Venus and new DCl and DF line strengths☆ , 2013 .

[46]  Thomas Widemann,et al.  HDO and SO2 thermal mapping on Venus: evidence for strong SO2 variability , 2012 .

[47]  V. Krasnopolsky,et al.  A photochemical model for the Venus atmosphere at 47–112 km , 2011 .

[48]  G. Villanueva,et al.  Measurement of the Isotopic Signatures of Water on Mars: Implications for Studying Methane , 2011 .

[49]  A. Titov,et al.  Near infrared diode laser spectroscopy of C2H2, H2O, CO2 and their isotopologues and the application to TDLAS, a tunable diode laser spectrometer for the martian PHOBOS-GRUNT space mission , 2010 .

[50]  A. D. Bykov,et al.  Semi-empiric approach to the calculation of H2O and CO2 line broadening and shifting , 2004 .

[51]  Gordon L. Bjoraker,et al.  High‐resolution spectroscopy of Mars at 3.7 and 8 μm: A sensitive search for H2O2, H2CO, HCl, and CH4, and detection of HDO , 1997 .

[52]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[53]  Pascal Rannou,et al.  Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model , 2004 .

[54]  P. Bernath,et al.  IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I—Energy levels and transition wavenumbers , 2013 .

[55]  T. Y. Chesnokova,et al.  Estimate of the J′J″ dependence of water vapor line broadening parameters , 2010 .