Clues to the ‘Magellanic Galaxy’ from cosmological simulations

We use cosmological simulations from the Aquarius Project to study the orbital history of the Large Magellanic Cloud (LMC) and its potential association with other satellites of the Milky Way (MW). We search for dynamical analogues to the LMC and find a subhalo that matches the LMC position and velocity at either of its two most recent pericentric passages. This suggests that the LMC is not necessarily on its first approach to the MW, provided that the virial mass of the MW is as high as that of the parent Aquarius halo; M200= 1.8 × 1012 M⊙. The simulation results yield specific predictions for the position and velocity of systems associated with the LMC prior to infall. If on the first approach, most should lie close to the LMC because the Galactic tidal field has not yet had enough time to disperse them. If on the second approach, the list of potential associates increases substantially because of the greater sky footprint and velocity range of LMC-associated debris. Interestingly, our analysis rules out an LMC association for Draco and Ursa Minor, two of the dwarf spheroidals suggested by Lynden-Bell & Lynden-Bell to form part of the 'Magellanic Ghostly Stream'. Our results also indicate that the direction of the orbital angular momentum is a powerful test of LMC association. This test, however, requires precise proper motions, which are unavailable for most MW satellites. Of the four satellites with published proper motions, only the Small Magellanic Cloud is clearly associated with the LMC. Taken at the face value, the proper motions of Carina, Fornax and Sculptor rule them out as potential associates, but this conclusion should be revisited when better data become available. The dearth of satellites clearly associated with the Clouds might be solved by wide-field imaging surveys that target its surroundings, a region that may prove a fertile hunting ground for faint, previously unnoticed MW satellites.

[1]  R. Beaton,et al.  DISCOVERY OF A LARGE STELLAR PERIPHERY AROUND THE SMALL MAGELLANIC CLOUD , 2011, 1104.2594.

[2]  E. Tollerud,et al.  SMALL-SCALE STRUCTURE IN THE SLOAN DIGITAL SKY SURVEY AND ΛCDM: ISOLATED ∼L* GALAXIES WITH BRIGHT SATELLITES , 2011, 1103.1875.

[3]  J. Simon,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. III. METALLICITY DISTRIBUTIONS OF MILKY WAY DWARF SATELLITE GALAXIES , 2010, 1011.4937.

[4]  R. Wechsler,et al.  HOW COMMON ARE THE MAGELLANIC CLOUDS? , 2010, 1011.2255.

[5]  D. Lambas,et al.  PROPERTIES OF SATELLITE GALAXIES IN THE SDSS PHOTOMETRIC SURVEY: LUMINOSITIES, COLORS, AND PROJECTED NUMBER DENSITY PROFILES , 2010, 1011.5227.

[6]  S. Majewski,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. IV. ALPHA ELEMENT DISTRIBUTIONS IN MILKY WAY SATELLITE GALAXIES , 2010, 1011.5221.

[7]  L. Hernquist,et al.  Dynamics of the Magellanic Clouds in a LCDM Universe , 2010, 1010.4797.

[8]  W. B. Burton,et al.  THE 200° LONG MAGELLANIC STREAM SYSTEM , 2010, 1009.0001.

[9]  Armin Rest,et al.  FIRST RESULTS FROM THE NOAO SURVEY OF THE OUTER LIMITS OF THE MAGELLANIC CLOUDS , 2010, 1008.3727.

[10]  Lars Hernquist,et al.  SIMULATIONS OF THE MAGELLANIC STREAM IN A FIRST INFALL SCENARIO , 2010, 1008.2210.

[11]  Warren R. Brown,et al.  THE MASS PROFILE OF THE GALAXY TO 80 kpc , 2010, 1005.2619.

[12]  Tucson,et al.  BIG FISH, LITTLE FISH: TWO NEW ULTRA-FAINT SATELLITES OF THE MILKY WAY , 2010, 1002.0504.

[13]  Luis A. Martinez-Vaquero,et al.  The grouping, merging and survival of subhaloes in the simulated Local Group , 2009, 0909.1916.

[14]  D. Zaritsky,et al.  THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD , 2009, 0908.1422.

[15]  Anu,et al.  The origin of Segue 1 , 2009, 0906.3669.

[16]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[17]  Zurich,et al.  The discovery of Segue 2: a prototype of the population of satellites of satellites , 2009, 0903.0818.

[18]  G. A. Moellenbrock,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS. VI. GALACTIC STRUCTURE, FUNDAMENTAL PARAMETERS, AND NONCIRCULAR MOTIONS , 2009, 0902.3913.

[19]  Genevieve M. Shattow,et al.  Implications of recent measurements of the Milky Way rotation for the orbit of the Large Magellanic Cloud , 2008, 0808.0104.

[20]  A. Helmi,et al.  THE UNORTHODOX ORBITS OF SUBSTRUCTURE HALOS , 2008, 0801.1127.

[21]  Carlos S. Frenk,et al.  The diversity and similarity of simulated cold dark matter haloes , 2008, 0810.1522.

[22]  V. Springel,et al.  Prospects for detecting supersymmetric dark matter in the Galactic halo , 2008, Nature.

[23]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[24]  N. W. Evans,et al.  A SPECTROSCOPIC CONFIRMATION OF THE BOOTES II DWARF SPHEROIDAL , 2008, 0809.0700.

[25]  Tucson,et al.  Leo V: A Companion of a Companion of the Milky Way Galaxy? , 2008, 0807.2831.

[26]  E. Olszewski,et al.  PROPER MOTIONS OF THE LARGE MAGELLANIC CLOUD AND SMALL MAGELLANIC CLOUD: RE-ANALYSIS OF HUBBLE SPACE TELESCOPE DATA , 2008 .

[27]  G. Lake,et al.  Small Dwarf Galaxies within Larger Dwarfs: Why Some Are Luminous while Most Go Dark , 2008, 0802.0001.

[28]  H. Rix,et al.  The Milky Way’s Circular Velocity Curve to 60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of ~2400 SDSS Blue Horizontal-Branch Stars , 2008, 0801.1232.

[29]  A. Helmi,et al.  Infall of substructures on to a Milky Way-like dark halo , 2007, 0711.2429.

[30]  M. J. Astrophysik,et al.  Masses for the Local Group and the Milky Way , 2007, 0710.3740.

[31]  R. Carrera,et al.  THE CHEMICAL ENRICHMENT HISTORY OF THE LARGE MAGELLANIC CLOUD , 2007, 0710.3076.

[32]  Joshua D. Simon,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE KINEMATICS OF THE ULTRA-FAINT MILKY WAY SATELLITES: SOLVING THE MISSING SATELLITE PROBLEM , 2022 .

[33]  N. F. Martin,et al.  A Keck/DEIMOS spectroscopic survey of faint Galactic satellites: searching for the least massive dwarf galaxies , 2007, 0705.4622.

[34]  M. Steinmetz,et al.  Satellites of simulated galaxies: survival, merging and their relationto the dark and stellar haloes , 2007, 0704.1770.

[35]  J. F. Navarro,et al.  Cosmic ménage à trois: the origin of satellite galaxies on extreme orbits , 2007, 0704.1773.

[36]  B. Robertson,et al.  Are the Magellanic Clouds on Their First Passage about the Milky Way? , 2007, astro-ph/0703196.

[37]  Sergey E. Koposov,et al.  Discovery of an Unusual Dwarf Galaxy in the Outskirts of the Milky Way , 2007, astro-ph/0701154.

[38]  Sergey E. Koposov,et al.  submitted to The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 CATS AND DOGS, HAIR AND A HERO: A QUINTET OF NEW MILKY WAY COMPANIONS † , 2022 .

[39]  B. Gibson,et al.  The RAVE Survey: Constraining the Local Galactic Escape Speed , 2006, Proceedings of the International Astronomical Union.

[40]  M. Mateo,et al.  Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. IV. Measurement for Sculptor , 2006, astro-ph/0601547.

[41]  A. Drake,et al.  The Proper Motion of the Large Magellanic Cloud Using HST , 2005, astro-ph/0508457.

[42]  A. Helmi,et al.  The radial velocity dispersion profile of the Galactic halo : constraining the density profile of the dark halo of the Milky Way , 2005, astro-ph/0506102.

[43]  Andrew A. West,et al.  A New Milky Way Companion: Unusual Globular Cluster or Extreme Dwarf Satellite? , 2004, astro-ph/0410416.

[44]  M. Mateo,et al.  Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. III. Measurement for Ursa Minor , 2003, astro-ph/0503620.

[45]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[46]  N. Suntzeff,et al.  New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002, astro-ph/0205161.

[47]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[48]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[49]  V. Springel,et al.  GADGET: a code for collisionless and gasdynamical cosmological simulations , 2000, astro-ph/0003162.

[50]  M. Mateo DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[51]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[52]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[53]  D. Lynden-Bell,et al.  Ghostly streams from the formation of the Galaxy’s halo , 1995 .

[54]  T. Sawa,et al.  Numerical simulations of the Magellanic system – I. Orbits of the Magellanic Clouds and the global gas distribution , 1994 .

[55]  D. Lin,et al.  On the proper motion of the Magellanic Clouds and the halo mass of our Galaxy , 1982 .

[56]  D. Lynden-Bell The Ursa Minor dwarf galaxy is a member of the Magellanic Stream , 1982 .

[57]  D. Lynden-Bell,et al.  Dwarf Galaxies and Globular Clusters in High Velocity Hydrogen Streams , 1976 .

[58]  K. Schwarzschild,et al.  The Observatory , 1886 .