Constrained Latent Class Analysis Using the Gibbs Sampler and Posterior Predictive P-values: Applications to Educational Testing

This paper will illustrate how a number of educational testing models may be formalized as constrained (using inequality and equality constraints) latent class models. The parameters of these models will be estimated using an application of the Gibbs sampler. The goodness of fit of these models will be determined using (pseudo) likelihood ratio tests evaluated via posterior predictive P-values. The feasibility of both the estimation and testing procedures will be illustrated via the analysis of a number of simulated data sets.

[1]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[2]  L. A. Goodman Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .

[3]  S. Haberman Log-Linear Models for Frequency Tables Derived by Indirect Observation: Maximum Likelihood Equations , 1974 .

[4]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[5]  Kentaro Yamamoto,et al.  HYBRID MODEL OF IRT AND LATENT CLASS MODELS , 1982 .

[6]  Charles Lewis,et al.  A Nonparametric Approach to the Analysis of Dichotomous Item Responses , 1982 .

[7]  C. Gouriéroux,et al.  PSEUDO MAXIMUM LIKELIHOOD METHODS: THEORY , 1984 .

[8]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[9]  Anton K. Formann,et al.  Constrained latent class models: Theory and applications , 1985 .

[10]  R.J.H. Engelen,et al.  Semiparametric estimation in the Rasch model , 1987 .

[11]  George B. Macready,et al.  A Simulation Study of the Difference Chi-Square Statistic for Comparing Latent Class Models Under Violation of Regularity Conditions , 1989 .

[12]  Marcel A. Croon,et al.  Latent class analysis with ordered latent classe , 1990 .

[13]  A. Narayanan Computer generation of dirichlet random vectors , 1990 .

[14]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[15]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[16]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[17]  B. Lindsay,et al.  Semiparametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis , 1991 .

[18]  Marcel A. Croon,et al.  Investigating Mokken scalability of dichotomous items by means of ordinal latent class analysis , 1991 .

[19]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[20]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[21]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[22]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[23]  C. Clogg,et al.  Discrete Latent Variable Models. , 1994 .

[24]  Xiao-Li Meng,et al.  Posterior Predictive $p$-Values , 1994 .

[25]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[26]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[27]  I. W. Molenaar,et al.  A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .

[28]  Ivo W. Molenaar,et al.  Nonparametric Models for Polytomous Responses , 1997 .

[29]  Robert J. Mokken,et al.  Nonparametric Models for Dichotomous Responses , 1997 .