Ambipolar organic field effect transistors and inverters with the natural material Tyrian Purple

Ambipolar organic semiconductors enable complementary-like circuits in organic electronics. Here we show promising electron and hole transport properties in the natural pigment Tyrian Purple (6,6’-dibromoindigo). X-ray diffraction of Tyrian Purple films reveals a highly-ordered structure with a single preferential orientation, attributed to intermolecular hydrogen bonding. This material, with a band gap of ∼1.8 eV, demonstrates high hole and electron mobilities of 0.22 cm2/V·s and 0.03 cm2/V·s in transistors, respectively; and air-stable operation. Inverters with gains of 250 in the first and third quadrant show the large potential of Tyrian Purple for the development of integrated organic electronic circuits.

[1]  Shinuk Cho,et al.  Poly(diketopyrrolopyrrole‐benzothiadiazole) with Ambipolarity Approaching 100% Equivalency , 2011 .

[2]  P. Sonar,et al.  A Low‐Bandgap Diketopyrrolopyrrole‐Benzothiadiazole‐Based Copolymer for High‐Mobility Ambipolar Organic Thin‐Film Transistors , 2010, Advanced materials.

[3]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[4]  S. Bauer,et al.  Environmentally sustainable organic field effect transistors , 2010 .

[5]  R. Jacob Baker,et al.  CMOS: Circuit Design, Layout, and Simulation (IEEE Press Series on Microelectronic Systems) , 2010 .

[6]  H. Sirringhaus,et al.  High Mobility Ambipolar Charge Transport in Polyselenophene Conjugated Polymers , 2010, Advanced materials.

[7]  A. Opitz,et al.  High-mobility copper-phthalocyanine field-effect transistors with tetratetracontane passivation layer and organic metal contacts , 2010 .

[8]  N. Muslim,et al.  Evaluation of cytotoxic, anti-angiogenic and antioxidant properties of standardized extracts of Strobilanthes crispus leaves. , 2010 .

[9]  Paul H. Wöbkenberg,et al.  Ambipolar organic transistors and near-infrared phototransistors based on a solution-processable squarilium dye , 2010 .

[10]  T. Bechtold,et al.  Handbook of Natural Colorants , 2009 .

[11]  T. Anthopoulos,et al.  Air-stable ambipolar organic transistors , 2007 .

[12]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[13]  Eugenio Cantatore,et al.  Air‐Stable Complementary‐like Circuits Based on Organic Ambipolar Transistors , 2006 .

[14]  Jean-Luc Brédas,et al.  Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors , 2004 .

[15]  E. Steingruber Indigo and Indigo Colorants , 2004 .

[16]  P. Süsse,et al.  6,6′-Dibromo-indigo, a main component of tyrian Purple , 1979, Naturwissenschaften.

[17]  N. S. Sariciftci,et al.  Hot wall epitaxial growth of highly ordered organic epilayers , 2003 .

[18]  Janos Veres,et al.  A novel gate insulator for flexible electronics , 2003 .

[19]  Zhenan Bao,et al.  Organic Field-Effect Transistors , 2007 .

[20]  C. Cooksey Tyrian Purple: 6,6’-Dibromoindigo and Related Compounds , 2001, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[21]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[22]  H. Gerlach,et al.  Regioselektiver Brom/Lithium‐Austausch bei 2,5‐Dibrom‐1‐nitrobenzol. – Eine einfache Synthese von 4‐Brom‐2‐nitrobenzaldehyd und 6,6′‐Dibromindigo , 1989 .

[23]  P. Gregory,et al.  Organic Chemistry in Colour , 1983 .

[24]  J. Haines,et al.  Microbial degradation of high-molecular-weight alkanes. , 1974, Applied microbiology.