Early Science with the Large Millimeter Telescope: CO and [C ii] Emission in the z = 4.3 AzTEC J095942.9+022938 (COSMOS AzTEC-1)

Measuring redshifted CO line emission is an unambiguous method for obtaining an accurate redshift and total cold gas content of optically faint, dusty starburst systems. Here, we report the first successful spectroscopic redshift determination of AzTEC J095942.9+022938 ("COSMOS AzTEC-1"), the brightest 1.1mm continuum source found in the AzTEC/JCMT survey (Scott et al. 2008), through a clear detection of the redshifted CO (4-3) and CO (5-4) lines using the Redshift Search Receiver on the Large Millimeter Telescope. The CO redshift of $z=4.3420\pm0.0004$ is confirmed by the detection of the redshifted 158 micron [C II] line using the Submillimeter Array. The new redshift and Herschel photometry yield $L_{FIR}=(1.1\pm0.1)\times 10^{13} L_\odot$ and $SFR = 1300\, M_\odot$ yr$^{-1}$. Its molecular gas mass derived using the ULIRG conversion factor is $1.4\pm0.2 \times 10^{11} M_\odot$ while the total ISM mass derived from the 1.1mm dust continuum is $3.7\pm0.7 \times 10^{11} M_\odot$ assuming dust temperature of 35 K. Our dynamical mass analysis suggests that the compact gas disk ($r\approx 1.1$ kpc, inferred from dust continuum and SED analysis) has to be nearly face-on, providing a natural explanation for the uncommonly bright, compact stellar light seen by the HST. The [C II] line luminosity $L_{[C~II]} = 7.8\pm1.1 \times 10^9 L_\odot$ is remarkably high, but it is only 0.04 per cent of the total IR luminosity. AzTEC COSMOS-1 and other high redshift sources with a spatially resolved size extend the tight trend seen between [C II]/FIR ratio and $\Sigma_{FIR}$ among IR-bright galaxies reported by Diaz-Santos et al. (2013) by more than an order of magnitude, supporting the explanation that the higher intensity of the IR radiation field is responsible for the "[C II] deficiency" seen among luminous starburst galaxies.

[1]  A. M. Swinbank,et al.  Early Science with the large millimeter telescope : observations of dust continuum and CO emission lines of cluster-lensed submillimetre galaxies at z=2.0-4.7 , 2015, 1506.04747.

[2]  J. Richard,et al.  ALMA detection of [C ii] 158 μm emission from a strongly lensed z = 2.013 star-forming galaxy , 2015, 1502.03842.

[3]  J. Carlstrom,et al.  The nature of the [C II] emission in dusty star-forming galaxies from the SPT survey , 2015, 1501.06909.

[4]  A. Verma,et al.  STRONG C+ EMISSION IN GALAXIES AT z ∼ 1–2: EVIDENCE FOR COLD FLOW ACCRETION POWERED STAR FORMATION IN THE EARLY UNIVERSE , 2014, 1411.1332.

[5]  M. J. Griffin,et al.  A FAR-INFRARED SPECTROSCOPIC SURVEY OF INTERMEDIATE REDSHIFT (ULTRA) LUMINOUS INFRARED GALAXIES , 2014, 1409.5605.

[6]  O. Fèvre,et al.  STAR FORMATION AT 4 < z < 6 FROM THE SPITZER LARGE AREA SURVEY WITH HYPER-SUPRIME-CAM (SPLASH) , 2014, 1407.7030.

[7]  R. Wechsler,et al.  THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.

[8]  J. Bernard-Salas,et al.  STAR FORMATION RATES FROM [C ii] 158 μm AND MID-INFRARED EMISSION LINES FOR STARBURSTS AND ACTIVE GALACTIC NUCLEI , 2014, 1405.5759.

[9]  IPAC,et al.  ALMA IMAGING OF GAS AND DUST IN A GALAXY PROTOCLUSTER AT REDSHIFT 5.3: [C ii] EMISSION IN “TYPICAL” GALAXIES AND DUSTY STARBURSTS ≈1 BILLION YEARS AFTER THE BIG BANG , 2014, 1404.7159.

[10]  Rebecca J. Williams,et al.  ALMA resolves turbulent, rotating [CII] emission in a young starburst galaxy at z = 4.8 , 2014, 1404.2295.

[11]  D. Riechers,et al.  HerMES: SPECTRAL ENERGY DISTRIBUTIONS OF SUBMILLIMETER GALAXIES AT z > 4 , 2014, 1401.6079.

[12]  K. Sheth,et al.  THE EVOLUTION OF INTERSTELLAR MEDIUM MASS PROBED BY DUST EMISSION: ALMA OBSERVATIONS AT z = 0.3–2 , 2014, The Astrophysical Journal.

[13]  P. Cox,et al.  High-resolution C + imaging of HDF850.1 reveals a merging galaxy at z = 5.185 , 2014, 1401.2396.

[14]  K. Schawinski,et al.  SUBMILLIMETER GALAXIES AS PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1401.1510.

[15]  S. E. Persson,et al.  A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT z ∼ 4 FROM ZFOURGE , 2013, 1312.4952.

[16]  A. Cimatti,et al.  The evolution of the dust temperatures of galaxies in the SFR–M∗ plane up to z ~ 2 , 2013, 1311.2956.

[17]  P. P. van der Werf,et al.  AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: THE REDSHIFT DISTRIBUTION AND EVOLUTION OF SUBMILLIMETER GALAXIES , 2013, 1310.6363.

[18]  Observatoire de Geneve,et al.  [C ii] AND 12CO(1–0) EMISSION MAPS IN HLSJ091828.6+514223: A STRONGLY LENSED INTERACTING SYSTEM AT z = 5.24 , 2013, 1310.4090.

[19]  S. Ravindranath,et al.  THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT , 2013, 1310.3819.

[20]  D. Elbaz,et al.  Mid- to far-infrared properties of star-forming galaxies and active galactic nuclei , 2013, 1309.3922.

[21]  F. Mannucci,et al.  Strongly star-forming rotating disks in a complex merging system at z = 4,7 as revealed by ALMA , 2013, 1308.5113.

[22]  S. Maddox,et al.  Far-infrared spectroscopy of a lensed starburst: a blind redshift from Herschel , 2013, 1308.4403.

[23]  Arizona State University,et al.  EXPLAINING THE [C ii]157.7 μm DEFICIT IN LUMINOUS INFRARED GALAXIES—FIRST RESULTS FROM A HERSCHEL/PACS STUDY OF THE GOALS SAMPLE , 2013, 1307.2635.

[24]  H. Rix,et al.  QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT z ∼ 2 , 2013, 1305.1943.

[25]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[26]  O. Ilbert,et al.  The Herschel census of infrared SEDs through cosmic time , 2013, 1302.4895.

[27]  Xiaohui Fan,et al.  STAR FORMATION AND GAS KINEMATICS OF QUASAR HOST GALAXIES AT z ∼ 6: NEW INSIGHTS FROM ALMA , 2013, 1302.4154.

[28]  A. Omont,et al.  REDSHIFT 6.4 HOST GALAXIES OF 108 SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS , 2013, 1302.1587.

[29]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[30]  D. Elbaz,et al.  GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT , 2012, The Astrophysical Journal.

[31]  P. Goldsmith,et al.  COLLISIONAL EXCITATION OF THE [C ii] FINE STRUCTURE TRANSITION IN INTERSTELLAR CLOUDS , 2012, 1209.4536.

[32]  F. Walter,et al.  EVIDENCE FOR A CLUMPY, ROTATING GAS DISK IN A SUBMILLIMETER GALAXY AT z = 4 , 2012, 1209.2418.

[33]  Edinburgh,et al.  An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field‐South: detection of [C ii] at z = 4.4 , 2012, 1209.1390.

[34]  K. Kimura,et al.  Initial Results from Nobeyama Molecular Gas Observations of Distant Bright Galaxies , 2012, 1206.3840.

[35]  R. Ellis,et al.  The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field , 2012, Nature.

[36]  M. Meneghetti,et al.  Resolved [CII] emission in a lensed quasar at z = 4.4 , 2012, 1205.4035.

[37]  A. M. Swinbank,et al.  A survey of molecular gas in luminous sub-millimetre galaxies , 2012, 1205.1511.

[38]  Liverpool John Moores University,et al.  DETECTION OF ATOMIC CARBON [C ii] 158 μm AND DUST EMISSION FROM A z = 7.1 QUASAR HOST GALAXY , 2012, 1203.5844.

[39]  D. L. Clements,et al.  HerMES: deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background , 2012, 1203.1925.

[40]  A. Cimatti,et al.  A Herschel view of the far-infrared properties of submillimetre galaxies , 2012, 1202.0761.

[41]  E. Ostriker,et al.  A general model for the CO–H2 conversion factor in galaxies with applications to the star formation law , 2011, 1110.3791.

[42]  M. Baes,et al.  The reliability of [C ii] as an indicator of the star formation rate , 2011 .

[43]  D. H. Hughes,et al.  Deep 1.1 mm-wavelength imaging of the GOODS-S field by AzTEC/ASTE – II. Redshift distribution and nature of the submillimetre galaxy population , 2011, 1109.6286.

[44]  I. P'erez-Fournon,et al.  HerMES: point source catalogues from deep Herschel-SPIRE observations★ , 2011, Monthly Notices of the Royal Astronomical Society.

[45]  D. H. Hughes,et al.  GAS AND DUST IN A SUBMILLIMETER GALAXY AT z = 4.24 FROM THE HERSCHEL ATLAS , 2011, 1107.2924.

[46]  S. Maddox,et al.  Physical conditions of the interstellar medium of high-redshift, strongly lensed submillimetre galaxies from the Herschel-ATLAS★ , 2011, Monthly Notices of the Royal Astronomical Society.

[47]  I. Aretxaga,et al.  THE REDSHIFT AND NATURE OF AzTEC/COSMOS 1: A STARBURST GALAXY AT z = 4.6 , 2011, 1102.4329.

[48]  I. Smail,et al.  ON THE EVOLUTION OF THE MOLECULAR GAS FRACTION OF STAR-FORMING GALAXIES , 2011, 1102.3694.

[49]  F. Walter,et al.  A SURVEY OF ATOMIC CARBON AT HIGH REDSHIFT , 2011, 1101.4027.

[50]  D. Elbaz,et al.  Evolution of the dusty infrared luminosity function from z = 0 to z = 2.3 using observations from Spitzer , 2011, 1101.2467.

[51]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[52]  C. Conselice,et al.  Origins of the extragalactic background at 1 mm from a combined analysis of the AzTEC and MAMBO data in GOODS-N , 2010, 1009.2503.

[53]  F. Walter,et al.  [CII] line emission in BRI 1335-0417 at z = 4.4 , 2010, 1008.1578.

[54]  C. Carilli,et al.  A MASSIVE MOLECULAR GAS RESERVOIR IN THE z = 5.3 SUBMILLIMETER GALAXY AzTEC-3 , 2010, 1008.0389.

[55]  National Radio Astronomy Observatory,et al.  CO J = 1–0 SPECTROSCOPY OF FOUR SUBMILLIMETER GALAXIES WITH THE ZPECTROMETER ON THE GREEN BANK TELESCOPE , 2010, 1006.3691.

[56]  C. Tucker,et al.  DETECTION OF THE 158 μm [C ii] TRANSITION AT z = 1.3: EVIDENCE FOR A GALAXY-WIDE STARBURST , 2010, 1003.2174.

[57]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[58]  Gopal Narayanan,et al.  THE REDSHIFT SEARCH RECEIVER OBSERVATIONS OF 12CO J = 1 → 0 IN 29 ULTRALUMINOUS INFRARED GALAXIES , 2009, 0906.2797.

[59]  R. Siebenmorgen,et al.  Starburst and cirrus models for submillimeter galaxies , 2009, 0906.0446.

[60]  F. Walter,et al.  A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.

[61]  Jia-Sheng Huang,et al.  The Physical Scale of the Far-Infrared Emission in the Most Luminous Submillimeter Galaxies , 2008, 0807.2243.

[62]  J. Austermann,et al.  Spitzer IRAC infrared colours of submillimetre-bright galaxies , 2008, 0806.2158.

[63]  C. I. O. Technology.,et al.  AzTEC millimetre survey of the COSMOS field – I. Data reduction and source catalogue , 2008, 0801.2779.

[64]  L. Silva,et al.  Modelling the spectral energy distribution of ULIRGs II: The energetic environment and the dense interstellar medium , 2007, 0712.1202.

[65]  Itziar Aretxaga,et al.  Evidence for a Population of High-Redshift Submillimeter Galaxies from Interferometric Imaging , 2007, 0708.1020.

[66]  G. Helou,et al.  The Infrared Luminosity Function of Galaxies at Redshifts z = 1 and z ~ 2 in the GOODS Fields , 2007, astro-ph/0701283.

[67]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview , 2006, astro-ph/0612305.

[68]  D. Iono,et al.  A Detection of [C II] Line Emission in the z = 4.7 QSO BR 1202–0725 , 2006, astro-ph/0606043.

[69]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[70]  Arjun Dey,et al.  Submitted to the Astrophysical Journal Letters Mid-Infrared Selection of Active Galaxies , 2004 .

[71]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[72]  F. Masci,et al.  Obscured and Unobscured Active Galactic Nuclei in the Spitzer Space Telescope First Look Survey , 2004, astro-ph/0405604.

[73]  J. Kneib,et al.  Submillimeter Galaxies , 2002, astro-ph/0202228.

[74]  G. Gavazzi,et al.  [CII] at 158 mu m as a star formation tracer in late-type galaxies , 2002, astro-ph/0201471.

[75]  C. Carilli,et al.  Radio-to-Far-Infrared Spectral Energy Distribution and Photometric Redshifts for Dusty Starburst Galaxies , 2001, astro-ph/0112074.

[76]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[77]  M. Yun,et al.  Radio Properties of Infrared-selected Galaxies in the IRAS 2 Jy Sample , 2001, astro-ph/0102154.

[78]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[79]  Ralf Siebenmorgen,et al.  Massive star formation in galaxies: radiative transfer models of the UV to millimetre emission of starburst galaxies , 2000 .

[80]  C. L. Carilli,et al.  The Radio-to-Submillimeter Spectral Index as a Redshift Indicator , 1998, astro-ph/9812251.

[81]  Alessandro Bressan,et al.  Modeling the Effects of Dust on Galactic Spectral Energy Distributions from the Ultraviolet to the Millimeter Band , 1998 .

[82]  P. Cox,et al.  Infrared Space Observatory Measurements of a [C II] 158 Micron Line Deficitin Ultraluminous Infrared Galaxies , 1998 .

[83]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[84]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[85]  Michael W. Werner,et al.  Infrared Space Observatory Measurements of [C II] Line Variations in Galaxies , 1997 .

[86]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[87]  N. Scoville,et al.  High-Resolution CO Observations of the Ultraluminous Infrared Galaxy Markarian 231 , 1996 .

[88]  A. Poglitsch,et al.  158 micron forbidden C II mapping of NGC 6946 - Probing the atomic medium , 1993 .

[89]  R. Ellis,et al.  The 60-μ and far-infrared luminosity functions of IRAS galaxies , 1990 .

[90]  B. Madore,et al.  The IRAS bright galaxy sample. II - The sample and luminosity function , 1987 .

[91]  J. Dunlop,et al.  From Z-Machines to Alma: (SUB) Millimeter Spectroscopy of Galaxies , 2007 .

[92]  M. Yun Radio-to-FIR Spectral Energy Distribution and Photometric Redshifts for Dusty Starburst Galaxies , 2001 .

[93]  R. Siebenmorgen,et al.  Massive Star Formation in Galaxies : Radiative transfer models of the UV to mm emission of starburst galaxies , 2022 .