Wavelets On Optimal Sampling Lattices for Volumetric Data

We exploit the theory of optimal sampling lattices in designing wavelets and filter banks for volumetric datasets. A true multidimensional (non-separable) filter bank is derived for the case of Haar wavelets and applied to various datasets for comparison with the corresponding separable multidimensional method. We propose a non-separable wavelet transform that yields the subsampled data on an optimal sampling lattice. This new non-separable filter bank allows for more accurate and efficient multi-resolution representation of the data over the traditional separable transforms. Furthermore, we take advantage of methods that render the data directly from this optimal sampling lattice to get images that demonstrate the superior quality of the subsampled data of our new algorithm compared to traditional methods. CR Categories: K.6.1 [Computer Graphics]: Volumetric Data— Hexagonal sampling K.7.m [Multidimesional Signal Processing]: Filter Banks—Wavelets

[1]  Wim Sweldens,et al.  Lifting scheme: a new philosophy in biorthogonal wavelet constructions , 1995, Optics + Photonics.

[2]  Jelena Kovacevic,et al.  FCO sampling of digital video using perfect reconstruction filter banks , 1993, IEEE Trans. Image Process..

[3]  Jelena Kovacevic,et al.  Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn , 1992, IEEE Trans. Inf. Theory.

[4]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[5]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[6]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[7]  P. Cosman,et al.  Wavelet zerotree image compression with packetization , 1998, IEEE Signal Processing Letters.

[8]  Markus Hadwiger,et al.  Texture Based Volume Rendering of Hexagonal Data Sets , 2003 .

[9]  Jelena Kovacevic,et al.  Perfect Reconstruction Filter Banks for Hdtv Representation and Coding* , 1989 .

[10]  Eero P. Simoncelli,et al.  Non-separable extensions of quadrature mirror filters to multiple dimensions , 1990, Proc. IEEE.

[11]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[12]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[13]  Todor Cooklev,et al.  Regular perfect-reconstruction filter banks and wavelet bases , 1995 .

[14]  Thomas Theußl,et al.  Isosurfaces on Optimal Regular Samples , 2003, VisSym.

[15]  W. Sweldens Wavelets and the lifting scheme : A 5 minute tour , 1996 .