Zero-parameter extension of general relativity with a varying cosmological constant

We provide a new extension of general relativity (GR) which has the remarkable property of being more constrained than GR plus a cosmological constant, having one less free parameter. This is implemented by allowing the cosmological constant to have a consistent space-time variation, through coding its dynamics in the torsion tensor. We demonstrate this mechanism by adding a `quasi-topological' term to the Einstein action, which naturally realizes a dynamical torsion with an automatic satisfaction of the Bianchi identities. Moreover, variation of the action with respect to this dynamical $\Lambda$ fixes it in terms of other variables, thus providing a scenario with less freedom than general relativity with a cosmological constant. Once matter is introduced, at least in the homogeneous and isotropic reduction, $\Lambda$ is uniquely determined by the field content of the model. We make an explicit construction using the Palatini formulation of GR and describe the striking properties of this new theory. We also highlight some possible extensions to the theory. A companion paper [1] explores the Friedmann--Robertson--Walker reduction for cosmology, and future work will study Solar System tests of the theory.

[1]  D. Raine General relativity , 1980, Nature.

[2]  R. Mann,et al.  Mass in Lovelock unique vacuum gravity theories , 2019, Physical Review D.

[3]  M. Cortês,et al.  Cosmology of minimal varying Lambda theories , 2019, Physical Review D.

[4]  S. Bahamonde,et al.  Can Horndeski theory be recast using teleparallel gravity? , 2019, Physical Review D.

[5]  L. Lombriser On the cosmological constant problem , 2019, Physics Letters B.

[6]  Tsutomu Kobayashi Horndeski theory and beyond: a review , 2019, Reports on progress in physics. Physical Society.

[7]  L. Smolin,et al.  A Universe that Does Not Know the Time , 2018, Universe.

[8]  Joao Magueijo,et al.  The Quantum Cosmological Constant , 2018, Symmetry.

[9]  B. Dittrich Cosmological Constant from Condensation of Defect Excitations , 2018, Universe.

[10]  B. Dittrich (3 + 1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces , 2017, 1701.02037.

[11]  L. Smolin Dynamics of the cosmological and Newton’s constant , 2015, 1507.01229.

[12]  N. Kaloper,et al.  Publisher’s Note: Vacuum energy sequestering: The framework and its cosmological consequences [Phys. Rev. D90, 084023 (2014)] , 2014 .

[13]  N. Kaloper,et al.  Vacuum Energy Sequestering: The Framework and Its Cosmological Consequences , 2014, 1406.0711.

[14]  T. Zlosnik,et al.  Cosmological signature change in Cartan gravity with dynamical symmetry breaking , 2013, 1311.4481.

[15]  N. Kaloper,et al.  Sequestering the standard model vacuum energy. , 2013, Physical review letters.

[16]  S. Tsujikawa Quintessence: a review , 2013, 1304.1961.

[17]  J. Zanelli,et al.  Cosmology with scalar–Euler form coupling , 2013, 1301.0821.

[18]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[19]  J. Yokoyama,et al.  Generalized G-Inflation —Inflation with the Most General Second-Order Field Equations— , 2011, 1105.5723.

[20]  F. Hehl,et al.  Beyond Einstein–Cartan gravity: quadratic torsion and curvature invariants with even and odd parity including all boundary terms , 2011, 1105.3504.

[21]  T. Harko,et al.  Energy conditions in modified Gauss-Bonnet gravity , 2010, 1011.4159.

[22]  J. Barrow,et al.  Testable solution of the cosmological constant and coincidence problems , 2010, 1010.4262.

[23]  J. Barrow,et al.  New solution of the cosmological constant problems. , 2010, Physical review letters.

[24]  J. Gerard,et al.  Cosmological perturbation in f(R, G) theories with a perfect fluid , 2010, 1005.1958.

[25]  G. Calcagni,et al.  Erratum: Cosmological Bardeen-Cooper-Schrieffer condensate as dark energy [Phys. Rev. D 81, 043511 (2010)] , 2010 .

[26]  Eugenio Bianchi Loop Quantum Gravity à la Aharonov–Bohm , 2009, 0907.4388.

[27]  N. Yunes,et al.  Chern-Simons Modified General Relativity , 2009, 0907.2562.

[28]  G. Calcagni,et al.  Cosmological Bardeen-Cooper-Schrieffer condensate as dark energy , 2009, 0906.5161.

[29]  G. Calcagni,et al.  Cosmological BCS condensate as dark energy , 2009 .

[30]  E. Copeland,et al.  Cosmological Constraints on $f(G)$ Dark Energy Models , 2009, 0903.4610.

[31]  J. Barrow,et al.  Cosmology of modified Gauss-Bonnet gravity , 2007, 0705.3795.

[32]  T. Koivisto,et al.  Cosmology and Astrophysical Constraints of Gauss-Bonnet Dark Energy , 2006, astro-ph/0606078.

[33]  S. Alexander A quantum gravitational relaxation of the cosmological constant , 2005, hep-th/0503146.

[34]  R. Jackiw,et al.  Chern-Simons modification of general relativity , 2003, gr-qc/0308071.

[35]  L. Smolin Quantum gravity with a positive cosmological constant , 2002, hep-th/0209079.

[36]  C. Soo Wavefunction of the Universe and Chern-Simons perturbation theory , 2001, gr-qc/0109046.

[37]  J. Overduin,et al.  Evolution of the scale factor with a variable cosmological term , 1998, astro-ph/9805260.

[38]  Holst,et al.  Barbero's Hamiltonian derived from a generalized Hilbert-Palatini action. , 1995, Physical review. D, Particles and fields.

[39]  L. Smolin,et al.  The Chern-Simons invariant as the natural time variable for classical and quantum cosmology , 1994, gr-qc/9405015.

[40]  C. Soo,et al.  Superspace dynamics and perturbations around 'emptiness' , 1993, gr-qc/9307018.

[41]  J. Rizos,et al.  Singularity-free cosmological solutions of the superstring effective action , 1993, hep-th/9305025.

[42]  I. Antoniadis,et al.  Moduli corrections to gauge and gravitational couplings in four-dimensional superstrings , 1992, hep-th/9204030.

[43]  Chang,et al.  BRST cohomology and invariants of four-dimensional gravity in Ashtekar variables. , 1992, Physical review. D, Particles and fields.

[44]  Kodama,et al.  Holomorphic wave function of the Universe. , 1990, Physical review. D, Particles and fields.

[45]  Jacobson,et al.  General relativity without the metric. , 1989, Physical review letters.

[46]  A. P. Balachandran,et al.  The {CP} Problem in Quantum Gravity , 1989 .

[47]  L. Smolin,et al.  Covariant action for Ashtekar's form of canonical gravity , 1988 .

[48]  L. Smolin,et al.  The left-handed spin connection as a variable for canonical gravity , 1987 .

[49]  J. Samuel A lagrangian basis for ashtekar’s reformulation of canonical gravity , 1987 .

[50]  M. Duff,et al.  New gravitational index theorems and super theorems , 1979 .

[51]  M. Duff,et al.  Axial and conformal anomalies for arbitrary spin in gravity and supergravity , 1978 .

[52]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[53]  S. Weinberg A new light boson , 1978 .

[54]  J. Plebański On the separation of Einsteinian substructures , 1977 .

[55]  S. W. MacDowell,et al.  Unified geometric theory of gravity and supergravity , 1977 .

[56]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .

[57]  T. Kibble Lorentz Invariance and the Gravitational Field , 1961 .

[58]  C. Soo,et al.  Ashtekar's variables and the topological phase of quantum gravity , 1991 .

[59]  L. Mason,et al.  Self-dual 2-forms and gravity , 1991 .

[60]  R. Capovilla,et al.  A Pure Spin-Connection Formulation of Gravity , 1991 .