Computationally efficient NMPC for batch and semi-batch processes using parsimonious input parameterization

Abstract The trend towards high-quality, low-volume chemical production has put more emphasis on batch and semi-batch processing due to its increased operational flexibility. The transient behavior of these processes makes their real-time optimization very challenging. In particular, the large prediction horizons required in shrinking-horizon NMPC increase the real-time computational effort due to expensive matrix factorizations. The computational delay associated with advanced control methods is usually underestimated in theoretical studies. However, this delay may contribute to suboptimal or, worse, infeasible operation in real-life applications. This study proposes to combine a tailored parsimonious input parameterization with shrinking-horizon NMPC to reduce the real-time computational effort. Models of the optimal solution are used to suggest parsimonious parameterizations (especially for sensitivity-seeking arcs) that lead to computationally efficient optimization. The proposed approach is illustrated in simulation on two case studies in the presence of uncertainty, namely a batch binary distillation column and a semi-batch reactor for the hydroformylation of 1-dodecene. The results show that the tailored parsimonious shrinking-horizon NMPC (i) performs very similarly to the standard shrinking-horizon NMPC in terms of cost, (ii) is computationally much more efficient than the standard shrinking-horizon NMPC especially at the beginning of the batch, (iii) is robust to plant-model mismatch.

[1]  Sebastian Engell,et al.  Multi-stage nonlinear model predictive control applied to a semi-batch polymerization reactor under uncertainty , 2013 .

[2]  Dominique Bonvin,et al.  On the various local solutions to a two-input dynamic optimization problem , 2016, Comput. Chem. Eng..

[3]  Christos Georgakis,et al.  How To NOT Make the Extended Kalman Filter Fail , 2013 .

[4]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[5]  Zoltan K. Nagy,et al.  Real‐time control of a semi‐industrial fed‐batch evaporative crystallizer using different direct optimization strategies , 2011 .

[6]  D. Bonvin,et al.  Optimization of batch reactor operation under parametric uncertainty — computational aspects , 1995 .

[7]  Dominique Bonvin,et al.  Dynamic optimization of constrained semi-batch processes using Pontryagin's minimum principle - An effective quasi-Newton approach , 2017, Comput. Chem. Eng..

[8]  Dominique Bonvin,et al.  NMPC using Pontryagin's Minimum Principle-Application to a two-phase semi-batch hydroformylation reactor under uncertainty , 2018, Comput. Chem. Eng..

[9]  Mark Cannon,et al.  Efficient nonlinear model predictive control algorithms , 2004, Annu. Rev. Control..

[10]  Dominique Bonvin,et al.  Evaluation of input parameterization for batch process optimization , 2006 .

[11]  Moritz Diehl,et al.  Dynamic optimization with CasADi , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[12]  Dominique Bonvin,et al.  Real-Time Optimization of Batch Processes by Tracking the Necessary Conditions of Optimality , 2007 .

[13]  Hong Jang,et al.  A robust NMPC scheme for semi-batch polymerization reactors , 2016 .

[14]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: I. Characterization of the nominal solution , 2003, Comput. Chem. Eng..

[15]  Wolfgang Marquardt,et al.  Model predictive control for online optimization of semi-batch reactors , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[16]  Dominique Bonvin,et al.  Dynamic optimization in the presence of uncertainty: From off-line nominal solution to measurement-based implementation , 2007 .

[17]  Wolfgang Marquardt,et al.  Dynamic optimization using adaptive control vector parameterization , 2005, Comput. Chem. Eng..

[18]  Wolfgang Marquardt,et al.  Fast NMPC schemes for regulatory and economic NMPC – A review ☆ , 2016 .

[19]  Martin Guay,et al.  Integration of real-time optimization and model predictive control , 2010 .

[20]  Dominique Bonvin,et al.  Measurement-based Optimization of Batch Processes: Meeting Terminal Constraints On-line via Trajectory Following , 2008 .

[21]  B. Srinivasan,et al.  Validation of a solution model for the optimization of a binary batch distillation column , 2005, Proceedings of the 2005, American Control Conference, 2005..

[22]  Kai Sundmacher,et al.  Model-based identification and experimental validation of the optimal reaction route for the hydroformylation of 1-dodecene , 2015 .

[23]  Wolfgang Marquardt,et al.  Productivity optimization of an industrial semi-batch polymerization reactor under safety constraints , 2000 .

[24]  J. Rawlings,et al.  Feedback control of chemical processes using on-line optimization techniques , 1990 .

[25]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[26]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[27]  Wolfgang Marquardt,et al.  Scenario-integrated on-line optimisation of batch reactors , 2003 .

[28]  B. Foss,et al.  A new optimization algorithm with application to nonlinear MPC , 2004 .

[29]  Victor M. Zavala,et al.  Advanced step nonlinear model predictive control for air separation units , 2009 .

[30]  Xuejin Yang,et al.  Advances in sensitivity-based nonlinear model predictive control and dynamic real-time optimization , 2015 .

[31]  Dominique Bonvin,et al.  Optimal operation of batch reactors—a personal view , 1998 .

[32]  L. Biegler,et al.  Fast economic model predictive control based on NLP-sensitivities , 2014 .

[33]  Vyacheslav Kungurtsev,et al.  Sensitivity-Based Economic NMPC with a Path-Following Approach , 2017 .

[34]  Wee Kiat. Lim,et al.  Dynamic optimization of batch processes. , 2010 .

[35]  Thomas F. Edgar,et al.  Application of Nonlinear Model Predictive Control to Optimal Batch Distillation , 1992 .

[36]  C. Georgakis,et al.  Nonlinear model predictive control of end-use properties in batch reactors , 2002 .

[37]  Kai Sundmacher,et al.  Dynamic Optimization of Constrained Semi-Batch Processes using Pontryagin’s Minimum Principle and Parsimonious Parameterization , 2017 .

[38]  Panagiotis D. Christofides,et al.  Economic model predictive control with time‐varying objective function for nonlinear process systems , 2014 .

[39]  S. Palanki,et al.  A feedback-based implementation scheme for batch process optimization , 2000 .

[40]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[41]  L. Biegler,et al.  A fast moving horizon estimation algorithm based on nonlinear programming sensitivity , 2008 .

[42]  Zoltan K. Nagy,et al.  Real-Time Implementation of Nonlinear Model Predictive Control of Batch Processes in an Industrial Framework , 2007 .

[43]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[44]  Richard D. Braatz,et al.  Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis , 2004 .

[45]  Robert J. Flassig,et al.  Probabilistic reactor design in the framework of elementary process functions , 2016, Comput. Chem. Eng..

[46]  Dominique Bonvin Control and optimization of batch processes , 2006 .

[47]  Fredrik Gjertsen,et al.  Bringing the On‐Line Control and Optimization of Semibatch Emulsion Copolymerization to the Pilot Plant , 2017 .

[48]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[49]  Wolfgang Marquardt,et al.  Detection and exploitation of the control switching structure in the solution of dynamic optimization problems , 2006 .

[50]  James B. Rawlings,et al.  Economic Dynamic Real-Time Optimization and Nonlinear Model-Predictive Control on Infinite Horizons , 2009 .

[51]  Wang Yang,et al.  Industrial application of a nonlinear model predictive control to polymerization reactors , 2001 .

[52]  Frank Allgöwer,et al.  Computational Delay in Nonlinear Model Predictive Control , 2004 .

[53]  Helen Durand,et al.  A tutorial review of economic model predictive control methods , 2014 .

[54]  D. Rippin,et al.  Implementation of Adaptive Optimal Operation for a Semi-Batch Reaction System , 1998 .

[55]  Bala Srinivasan,et al.  IMPROVEMENT OF PROCESS OPERATION IN THE PRODUCTION OF SPECIALTY CHEMICALS , 2006 .

[56]  Sebastian Engell,et al.  FEEDBACK CONTROL FOR OPTIMAL PROCESS OPERATION , 2007 .

[57]  Lorenz T. Biegler,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2018 .

[58]  Darci Odloak,et al.  Real time optimization (RTO) with model predictive control (MPC) , 2010, Comput. Chem. Eng..

[59]  C. V. Rao,et al.  Constrained process monitoring: Moving‐horizon approach , 2002 .

[60]  B. Kouvaritakis,et al.  Efficient MPC Optimization using Pontryagin's Minimum Principle , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[61]  Riccardo Scattolini,et al.  Architectures for distributed and hierarchical Model Predictive Control - A review , 2009 .

[62]  Dominique Bonvin,et al.  SCALE-UP OF BATCH PROCESSES VIA DECENTRALIZED CONTROL , 2006 .