Flattening and solidification behavior of in-flight droplets in plasma spraying and micro/macro-bonding mechanisms

[1]  H. Park,et al.  Synergistic interfacial reinforcement of carbon fiber/polyamide 6 composites using carbon-nanotube-modified silane coating on ZnO-nanorod-grown carbon fiber , 2018, Composites Science and Technology.

[2]  Guanjun Yang,et al.  Epitaxial Growth and Cracking Mechanisms of Thermally Sprayed Ceramic Splats , 2018, Journal of Thermal Spray Technology.

[3]  Chang-jiu Li,et al.  Influence of microstructure on the mechanical integrity of plasma-sprayed TiO2 splat , 2017 .

[4]  Liang Wang,et al.  Characteristics of thick columnar YSZ coatings fabricated by plasma spray-physical vapor deposition , 2017 .

[5]  T. Yuan,et al.  Failure analysis of fine-lamellar structured YSZ based thermal barrier coatings with submicro/nano-grains , 2017 .

[6]  Chang-jiu Li,et al.  Epitaxial Growth During the Rapid Solidification of Plasma-Sprayed Molten TiO2 Splat , 2017, International Thermal Spray Conference.

[7]  Guanjun Yang,et al.  Conditions and mechanisms for the bonding of a molten ceramic droplet to a substrate after high-speed impact , 2016 .

[8]  Seung A. Song,et al.  A novel coating method using zinc oxide nanorods to improve the interfacial shear strength between carbon fiber and a thermoplastic matrix , 2016 .

[9]  Jun Li,et al.  Microstructural evolution of plasma sprayed submicron-/nano-zirconia-based thermal barrier coatings , 2016 .

[10]  Sigurdur T. Thoroddsen,et al.  Drop Impact on a Solid Surface , 2016 .

[11]  Z. Han,et al.  Particle in-flight behavior and its influence on the microstructure and properties of supersonic-atmospheric-plasma-sprayed nanostructured thermal barrier coatings , 2015 .

[12]  Z. Han,et al.  Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying , 2015 .

[13]  Xiao-Tao Luo,et al.  Epitaxial Grain Growth during 8YSZ Splat Formation on Polycrystalline YSZ Substrates by Plasma Spraying , 2015, International Thermal Spray Conference.

[14]  Kun Liu,et al.  Particle in-flight behavior and its influence on the microstructure and mechanical property of plasma sprayed La2Ce2O7 thermal barrier coatings , 2015 .

[15]  Qingzhen Yang,et al.  A transmission electron microscopy study of the microstructure and interface of zirconia-based thermal barrier coatings , 2015 .

[16]  Pei Wei,et al.  Splat formation during plasma spraying for 8 mol% yttria-stabilized zirconia droplets impacting on stainless steel substrate , 2014 .

[17]  Jingguang Zhu,et al.  Modeling the impact, flattening and solidification of a molten droplet on a solid substrate during plasma spraying , 2014 .

[18]  Chang-jiu Li,et al.  Critical bonding temperature for the splat bonding formation during plasma spraying of ceramic materials , 2013 .

[19]  P. Fauchais,et al.  Comparison between metallic and ceramic splats: Influence of viscosity and kinetic energy on the particle flattening , 2013 .

[20]  L. Pawłowski,et al.  Electron microscopy and diffraction studies of suspension-plasma-sprayed ZrO2 + 8 wt.% Y2O3 coatings , 2013 .

[21]  Chang-Jiu Li,et al.  Development of Particle Interface Bonding in Thermal Spray Coatings: A Review , 2013, Journal of Thermal Spray Technology.

[22]  C. Hardwicke,et al.  Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review , 2013, Journal of Thermal Spray Technology.

[23]  Yu Bai,et al.  Melting Refining Mechanisms in Supersonic Atmospheric Plasma Spraying , 2012, Plasma Chemistry and Plasma Processing.

[24]  S. Gu,et al.  Modelling of Impingement Phenomena for Molten Metallic Droplets with Low to High Velocities , 2012 .

[25]  Kun Yang,et al.  Verification of the flattening behavior of thermal-sprayed particles and free-falling droplets through controlling ambient pressure , 2011 .

[26]  Hui Li,et al.  Structure–property differences between supersonic and conventional atmospheric plasma sprayed zirconia thermal barrier coatings , 2011 .

[27]  Wenya Li,et al.  Effect of impact-induced melting on interface microstructure and bonding of cold-sprayed zinc coating , 2010 .

[28]  Haiping Fang,et al.  The length scales for stable gas nanobubbles at liquid/solid surfaces , 2010 .

[29]  D. Lohse,et al.  On the shape of surface nanobubbles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[30]  J. Perepezko The Hotter the Engine, the Better , 2009, Science.

[31]  Kun Yang,et al.  Effect of Ambient Pressure on Flattening Behavior of Thermal Sprayed Particles , 2009 .

[32]  A. Gouldstone,et al.  Nanoporous surfaces via impact of molten metallic droplets , 2009 .

[33]  A. Gouldstone,et al.  On the Role of Bubbles in Metallic Splat Nanopores and Adhesion , 2008 .

[34]  Chang-jiu Li,et al.  Influence of through-lamella grain growth on ionic conductivity of plasma-sprayed yttria-stabilized zirconia as an electrolyte in solid oxide fuel cells , 2008 .

[35]  A. Gouldstone,et al.  Observations of nanoporous foam arising from impact and rapid solidification of molten Ni droplets , 2007 .

[36]  E. Ohmura,et al.  Molecular Dynamics Simulation of Flattening Process of a High-Temperature, High-Speed Droplet—Influence of Impact Parameters , 2007, International Thermal Spray Conference.

[37]  H. Pokhmurska,et al.  Development and trends in HVOF spraying technology , 2006 .

[38]  K. Shinoda,et al.  Influence of impact parameters of zirconia droplets on splat formation and morphology in plasma spraying , 2006 .

[39]  Chang-jiu Li,et al.  Evaporated-gas-induced splashing model for splat formation during plasma spraying , 2004 .

[40]  Chang-jiu Li,et al.  Transient contact pressure during flattening of thermal spray droplet and its effect on splat formation , 2004 .

[41]  Z. Wang,et al.  Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings , 2003 .

[42]  Y. Tsunekawa,et al.  Microstructure of Plasma-Sprayed Cast Iron Splats with Different Particle Sizes , 2003 .

[43]  Y. Tsunekawa,et al.  Splat morphology and microstructure of plasma sprayed cast iron with different preheat substrate temperatures , 2002 .

[44]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[45]  M. Fukumoto,et al.  Effect of interface wetting on flattening of freely fallen metal droplet onto flat substrate surface , 2002 .

[46]  M. Pasandideh-Fard,et al.  Dynamics of Splat Formation in Plasma Spray Coating Process , 2002 .

[47]  A. H. King,et al.  Transmission electron microscopy study of rapid solidification of plasma sprayed zirconia – part II. Interfaces and subsequent splat solidification , 2001 .

[48]  A. H. King,et al.  Transmission electron microscopy study of rapid solidification of plasma sprayed zirconia. Part I. First splat solidification , 2001 .

[49]  Sanjeev Chandra,et al.  Impact, recoil and splashing of molten metal droplets , 2000 .

[50]  V. Sobolev,et al.  Effect of wave processes on splat formation during thermal spraying , 2000 .

[51]  S. Chandra,et al.  Parameters controlling solidification of molten wax droplets falling on a solid surface , 1999 .

[52]  Y. Huang,et al.  Flattening mechanism in thermal sprayed nickel particle impinging on flat substrate surface , 1999 .

[53]  P. Fauchais,et al.  Influence of the velocity of plasma-sprayed particles on splat formation , 1993 .

[54]  J. Szekely,et al.  Fluid flow, heat transfer, and solidification of molten metal droplets impinging on substrates: Comparison of numerical and experimental results , 1992 .

[55]  Chang-jiu Li,et al.  Influence of Deposition Temperature on the Microstructures and Properties of Plasma-Sprayed Al2O3 Coatings , 2011 .

[56]  M. Fukumoto,et al.  Effect of Substrate Temperature and Ambient Pressure on Heat Transfer at Interface Between Molten Droplet and Substrate Surface , 2011 .

[57]  C. Ding,et al.  Particle in-flight behavior and its influence on the microstructure and mechanical properties of plasma-sprayed Al2O3 coatings , 2008 .

[58]  Paul G. Klemens,et al.  Ceramic materials for thermal barrier coatings , 2004 .