Progressively Type-II censored competing risks data from Lomax distributions

A competing risks model based on Lomax distributions is considered under progressive Type-II censoring. Maximum likelihood estimates for the distribution parameters are established. Moreover, the expected Fisher information matrix is computed and optimal Fisher information based censoring plans are discussed. In particular, it turns out that the optimal censoring scheme depends on the particular parametrization of the Lomax distributions.

[1]  M. Bryson Heavy-Tailed Distributions: Properties and Tests , 1974 .

[2]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[3]  E. K. Al-Hussaini,et al.  Accelerated life tests under finite mixture models , 2006 .

[4]  Mojtaba Ganjali,et al.  On some lifetime distributions with decreasing failure rate , 2009, Comput. Stat. Data Anal..

[5]  J. I. McCool Competing Risk and Multiple Comparison Analysis for Bearing Fatigue Tests , 1978 .

[6]  Sam C. Saunders,et al.  Maximum Likelihood Estimation for Two-Parameter Decreasing Hazard Rate Distributions Using Censored Data , 1983 .

[7]  Narayanaswamy Balakrishnan,et al.  Progressive censoring methodology: an appraisal , 2007 .

[8]  M. Crowder Classical Competing Risks , 2001 .

[9]  Mohammad Z. Raqab,et al.  Prediction for Pareto distribution based on progressively Type-II censored samples , 2010, Comput. Stat. Data Anal..

[10]  Narayanaswamy Balakrishnan,et al.  Optimal Progressive Censoring Plans for the Weibull Distribution , 2004, Technometrics.

[11]  T. Rychlik,et al.  On the existence of moments of generalized order statistics , 2002 .

[12]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[13]  Ganapati P. Patil,et al.  Statistical Distributions in Scientific Work , 1981 .

[14]  K. Lomax Business Failures: Another Example of the Analysis of Failure Data , 1954 .

[15]  Sumit Kumar,et al.  On progressively censored competing risks data for Weibull distributions , 2009, Comput. Stat. Data Anal..

[16]  Shu-Fei Wu,et al.  Interval estimation for a Pareto distribution based on a doubly type II censored sample , 2008, Comput. Stat. Data Anal..

[17]  Udo Kamps,et al.  Optimality Criteria and Optimal Schemes in Progressive Censoring , 2007 .

[18]  Donghoon Han,et al.  Optimal Progressive Type-II Censoring Schemes for Nonparametric Confidence Intervals of Quantiles , 2007, Commun. Stat. Simul. Comput..

[19]  Marco Burkschat On optimality of extremal schemes in progressive type II censoring , 2008 .

[20]  Narayanaswamy Balakrishnan,et al.  An Asymptotic Approach to Progressive Censoring , 2005 .

[21]  D. Cox,et al.  THE ANALYSIS OF EXPONENTIALLY DISTRIBUTED LIFE-TIMES WITH Two TYPES OF FAILURE , 1959 .

[22]  Ingram Olkin,et al.  Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families , 2007 .

[23]  Debasis Kundu,et al.  Bayesian inference and life testing plans for generalized exponential distribution , 2009 .

[24]  A. Cohen,et al.  Progressively Censored Samples in Life Testing , 1963 .

[25]  Debasis Kundu,et al.  On progressively censored generalized exponential distribution , 2009 .

[26]  Barry C. Arnold,et al.  A goodness of fit test for the Pareto distribution in the presence of Type II censoring, based on the cumulative hazard function , 2010, Comput. Stat. Data Anal..

[27]  V. B. Melas,et al.  Advances in Stochastic Simulation Methods , 2012 .

[28]  Udo Kamps,et al.  On distributions Of generalized order statistics , 2001 .

[29]  Ismihan Bayramoglu,et al.  Expected values of the number of failures for two populations under joint Type-II progressive censoring , 2009 .

[30]  Narayanaswamy Balakrishnan,et al.  Fisher information based progressive censoring plans , 2008, Comput. Stat. Data Anal..

[31]  Udo Kamps,et al.  On optimal schemes in progressive censoring , 2006 .

[32]  S. Kotz,et al.  Parameter estimation of the generalized Pareto distribution—Part II , 2010 .

[33]  M. A. M. Ali Mousa,et al.  Inference and prediction for pareto progressively censored data , 2001 .

[34]  M. Ganjali,et al.  Simultaneous Confidence Intervals for the Parameters of Pareto Distribution under Progressive Censoring , 2009 .

[35]  Tomasz J. Kozubowski,et al.  Testing Exponentiality Versus Pareto Distribution via Likelihood Ratio , 2008, Commun. Stat. Simul. Comput..

[36]  Narayanaswamy Balakrishnan,et al.  Interval Estimation of Parameters of Life From Progressively Censored Data , 1994 .

[37]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[38]  Udo Kamps,et al.  A concept of generalized order statistics , 1995 .

[39]  Zaher A. Abo-Eleneen Fisher information and optimal schemes in progressive Type-II censored samples , 2007, Model. Assist. Stat. Appl..

[40]  Zeinhum F. Jaheen,et al.  Bayesian one-sample prediction of future observations under Pareto distribution , 2003 .

[41]  Narayanaswamy Balakrishnan,et al.  Analysis of Progressively Censored Competing Risks Data , 2003, Advances in Survival Analysis.

[42]  A. Childs,et al.  Conditional Inference for the Parameters of Pareto Distributions when Observed Samples are Progressively Censored , 2000 .

[43]  J. D. Castillo,et al.  Estimation of the generalized Pareto distribution , 2009 .

[44]  D G Hoel,et al.  A representation of mortality data by competing risks. , 1972, Biometrics.