Birkhoff Completeness in Institutions

Abstract.We develop an abstract proof calculus for logics whose sentences are ‘Horn sentences’ of the form: $$(\forall X)H \Rightarrow c$$ and prove an institutional generalization of Birkhoff completeness theorem. This result is then applied to the particular cases of Horn clauses logic, the ‘Horn fragment’ of preorder algebras, order-sorted algebras and partial algebras and their infinitary variants.

[1]  Razvan Diaconescu,et al.  Herbrand theorems in arbitrary institutions , 2004, Inf. Process. Lett..

[2]  R. Diaconescu Institution-independent model theory , 2008 .

[3]  Joseph A. Goguen,et al.  An Oxford survey of order sorted algebra , 1994, Mathematical Structures in Computer Science.

[4]  Razvan Diaconescu,et al.  Logical foundations of CafeOBJ , 2002, Theor. Comput. Sci..

[5]  G. Birkhoff,et al.  On the Structure of Abstract Algebras , 1935 .

[6]  Marius Petria An Institutional Version of Gödel's Completeness Theorem , 2007, CALCO.

[7]  Razvan Diaconescu An Institution-independent Proof of Craig Interpolation Theorem , 2004, Stud Logica.

[8]  P. Burmeister A Model Theoretic Oriented Approach to Partial Algebras , 1986 .

[9]  Grigore Rosu,et al.  Complete Categorical Deduction for Satisfaction as Injectivity , 2006, Essays Dedicated to Joseph A. Goguen.

[10]  Razvan Diaconescu Proof Systems for Institutional Logic , 2006, J. Log. Comput..

[11]  Andrei Popescu,et al.  An Institution-Independent Proof of the Robinson Consistency Theorem , 2007, Stud Logica.

[12]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[13]  Andrzej Tarlecki,et al.  Quasi-varieties in Abstract Algebraic Institutions , 1986, J. Comput. Syst. Sci..

[14]  Andrzej Tarlecki,et al.  Bits and Pieces of the Theory of Institutions , 1985, ADT.

[15]  Razvan Diaconescu,et al.  Institution-independent Ultraproducts , 2002, Fundam. Informaticae.

[16]  Razvan Diaconescu,et al.  Saturated models in institutions , 2010, Arch. Math. Log..

[17]  Horst Reichel Structural induction on partial algebras , 1984 .

[18]  Peter D. Mosses,et al.  CASL: the Common Algebraic Specification Language , 2002, Theor. Comput. Sci..

[19]  Razvan Diaconescu,et al.  Abstract Beth definability in institutions , 2006, J. Symb. Log..

[20]  José Meseguer,et al.  Order-Sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations , 1992, Theor. Comput. Sci..

[21]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[22]  J. Hintikka,et al.  What is Logic , 2007 .