Birkhoff Completeness in Institutions
暂无分享,去创建一个
[1] Razvan Diaconescu,et al. Herbrand theorems in arbitrary institutions , 2004, Inf. Process. Lett..
[2] R. Diaconescu. Institution-independent model theory , 2008 .
[3] Joseph A. Goguen,et al. An Oxford survey of order sorted algebra , 1994, Mathematical Structures in Computer Science.
[4] Razvan Diaconescu,et al. Logical foundations of CafeOBJ , 2002, Theor. Comput. Sci..
[5] G. Birkhoff,et al. On the Structure of Abstract Algebras , 1935 .
[6] Marius Petria. An Institutional Version of Gödel's Completeness Theorem , 2007, CALCO.
[7] Razvan Diaconescu. An Institution-independent Proof of Craig Interpolation Theorem , 2004, Stud Logica.
[8] P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras , 1986 .
[9] Grigore Rosu,et al. Complete Categorical Deduction for Satisfaction as Injectivity , 2006, Essays Dedicated to Joseph A. Goguen.
[10] Razvan Diaconescu. Proof Systems for Institutional Logic , 2006, J. Log. Comput..
[11] Andrei Popescu,et al. An Institution-Independent Proof of the Robinson Consistency Theorem , 2007, Stud Logica.
[12] Joseph A. Goguen,et al. Institutions: abstract model theory for specification and programming , 1992, JACM.
[13] Andrzej Tarlecki,et al. Quasi-varieties in Abstract Algebraic Institutions , 1986, J. Comput. Syst. Sci..
[14] Andrzej Tarlecki,et al. Bits and Pieces of the Theory of Institutions , 1985, ADT.
[15] Razvan Diaconescu,et al. Institution-independent Ultraproducts , 2002, Fundam. Informaticae.
[16] Razvan Diaconescu,et al. Saturated models in institutions , 2010, Arch. Math. Log..
[17] Horst Reichel. Structural induction on partial algebras , 1984 .
[18] Peter D. Mosses,et al. CASL: the Common Algebraic Specification Language , 2002, Theor. Comput. Sci..
[19] Razvan Diaconescu,et al. Abstract Beth definability in institutions , 2006, J. Symb. Log..
[20] José Meseguer,et al. Order-Sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations , 1992, Theor. Comput. Sci..
[21] J. Adámek,et al. Locally Presentable and Accessible Categories: Bibliography , 1994 .
[22] J. Hintikka,et al. What is Logic , 2007 .