Separating Classes in the Exponential-Time Hierarchy From Classes in PH

We are interested in separating classes in the exponential-time hierarchy, EXPH, from classes in the polynomial-time hierarchy, PH. In this paper we show that, for any fixed integer c, the class of sets accepted in deterministic polynomial time using at most O(nc) queries to an NP oracle, PNP[O(nc)], is a proper subset of NEXP. This improves a previous result by Fu et al. [7]. Further, we generalize this separation to related levels of PH and EXPH showing that, for any fixed integer c and i ⩾ 1, ΔiP[O(nc)] ⊊ ∑i − 1EXP. This improves the long standing separations which result from the relativization of the time hierarchy theorem [9, 6, 17, 3, 1].

[1]  John Gill,et al.  Relativizations of the P =? NP Question , 1975, SIAM J. Comput..

[2]  Jim Kadin,et al.  P^(NP[O(log n)]) and Sparse Turing-Complete Sets for NP , 1989, J. Comput. Syst. Sci..

[3]  Lane A. Hemaspaandra,et al.  The Strong Exponential Hierarchy Collapses , 1987, J. Comput. Syst. Sci..

[4]  Sarah Mocas Separating exponential time classes from polynomial time classes , 1993 .

[5]  Stephen A. Cook,et al.  A hierarchy for nondeterministic time complexity , 1972, J. Comput. Syst. Sci..

[6]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[7]  Stephen R. Mahaney Sparse Complete Sets of NP: Solution of a Conjecture of Berman and Hartmanis , 1982, J. Comput. Syst. Sci..

[8]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[9]  Stephen R. Mahaney Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[10]  Bin Fu,et al.  Some properties of exponential time complexity classes , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[11]  Harry Buhrman,et al.  On the Cutting Edge of Relativization: The Resource Bounded Injury Method , 1994, ICALP.

[12]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[13]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[14]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[15]  Janos Simon On some central problems in computational complexity , 1975 .

[16]  L. Hemachandra,et al.  Counting in structural complexity theory , 1987 .

[17]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[18]  Neil Immerman,et al.  Sparse sets in NP-P: Exptime versus nexptime , 1983, STOC.