A dynamic P300-based BCI speller using a language model

The dynamic P300-based speller adjusts the number of flashes per character according to the character's probability of occurrence, as predicted by a language model. The speller consists of two modules: the modified P300 speller using a row-column paradigm, and the prediction by partial matching PPM language module. Two cases are considered, prediction hit and prediction miss, according to whether the character predicted by the model coincides with the character intended by the subject. Preliminary experimental results point to the possible advantages of the modified P300 speller which reduces total flash time, while preserving performance.

[1]  Alistair Moffat,et al.  Implementing the PPM data compression scheme , 1990, IEEE Trans. Commun..

[2]  Jonathan R. Wolpaw,et al.  Brain–Computer Interfaces: Something New under the Sun , 2012 .

[3]  E. Donchin,et al.  Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. , 1988, Electroencephalography and clinical neurophysiology.

[4]  Alistair Moffat,et al.  Adding compression to a full‐text retrieval system , 1995, Softw. Pract. Exp..

[5]  R. Fazel-Rezai,et al.  Human Error in P300 Speller Paradigm for Brain-Computer Interface , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[6]  Geoff Holmes,et al.  Correcting English text using PPM models , 1998, Proceedings DCC '98 Data Compression Conference (Cat. No.98TB100225).

[7]  J. Wolpaw,et al.  A novel P300-based brain–computer interface stimulus presentation paradigm: Moving beyond rows and columns , 2010, Clinical Neurophysiology.

[8]  Mengxia Wang Design of a Modified P300 Speller System Based on Prediction by Partial Matching Language Model , 2012 .

[9]  Ian H. Witten,et al.  The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression , 1991, IEEE Trans. Inf. Theory.

[10]  Tomasz M. Rutkowski Auditory Brain-Computer/Machine-Interface Paradigms Design , 2011, HAID.

[11]  Eric Brill,et al.  A Simple Rule-Based Part of Speech Tagger , 1992, HLT.

[12]  G. Edlinger,et al.  State-of-the-Art in BCI Research: BCI Award 2010 , 2011 .

[13]  Ronald Rosenfeld,et al.  A maximum entropy approach to adaptive statistical language modelling , 1996, Comput. Speech Lang..

[14]  Alan T. Sherman,et al.  Statistical Techniques for Language Recognition: an Introduction and Guide for Cryptanalysts , 1993, Cryptologia.

[15]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[16]  John G. Cleary,et al.  Unbounded Length Contexts for PPM , 1997 .

[17]  Takeshi Yamada,et al.  Spatial auditory BCI paradigm utilizing N200 and P300 responses , 2012, Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference.

[18]  Mel Slater,et al.  Brain Computer Interface for Virtual Reality Control , 2009, ESANN.