Joint Microbial and Metabolomic Network Estimation with the Censored Gaussian Graphical Model

Joint analysis of microbiome and metabolomic data represents an imperative objective as the field moves beyond basic microbiome association studies and turns towards mechanistic and translational investigations. We present a censored Gaussian graphical model framework, where the metabolomic data are treated as continuous and the microbiome data as censored at zero, to identify direct interactions (defined as conditional dependence relationships) between microbial species and metabolites. Simulated examples show that our method metaMint performs favorably compared to the existing ones. metaMint also provides interpretable microbe-metabolite interactions when applied to a bacterial vaginosis data set. R implementation of metaMint is available on GitHub.

[1]  Arthur Brady,et al.  Strains, functions and dynamics in the expanded Human Microbiome Project , 2017, Nature.

[2]  Christian L. Müller,et al.  Microbial Networks in SPRING - Semi-parametric Rank-Based Correlation and Partial Correlation Estimation for Quantitative Microbiome Data , 2019, bioRxiv.

[3]  Paul J. McMurdie,et al.  Exact sequence variants should replace operational taxonomic units in marker-gene data analysis , 2017, The ISME Journal.

[4]  P. Gajer,et al.  Vaginal microbiome of reproductive-age women , 2010, Proceedings of the National Academy of Sciences.

[5]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[6]  Shyamal D. Peddada,et al.  Analysis of Microbiome Data in the Presence of Excess Zeros , 2017, Front. Microbiol..

[7]  B. Bollobás The evolution of random graphs , 1984 .

[8]  V. Vinciotti,et al.  ` 1-Penalized Censored Gaussian Graphical Model , 2018 .

[9]  Huijue Jia,et al.  Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention , 2017, Nature Medicine.

[10]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[11]  Christian L. Müller,et al.  Sparse and Compositionally Robust Inference of Microbial Ecological Networks , 2014, PLoS Comput. Biol..

[12]  Alberto de la Fuente,et al.  Discovery of meaningful associations in genomic data using partial correlation coefficients , 2004, Bioinform..

[13]  HUAYING FANG,et al.  gCoda: Conditional Dependence Network Inference for Compositional Data , 2017, J. Comput. Biol..

[14]  J. Marrazzo,et al.  Molecular identification of bacteria associated with bacterial vaginosis. , 2005, The New England journal of medicine.

[15]  Harrison H. Zhou,et al.  Estimating Sparse Precision Matrix: Optimal Rates of Convergence and Adaptive Estimation , 2012, 1212.2882.

[16]  A. Adimora,et al.  Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies , 2008, AIDS.

[17]  Rob Knight,et al.  Current understanding of the human microbiome , 2018, Nature Medicine.

[18]  Kevin S. Bonham,et al.  Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases , 2019, Nature.

[19]  J. Kendrick,et al.  The Prevalence of Bacterial Vaginosis in the United States, 2001–2004; Associations With Symptoms, Sexual Behaviors, and Reproductive Health , 2007, Sexually transmitted diseases.

[20]  Jonathan Friedman,et al.  Inferring Correlation Networks from Genomic Survey Data , 2012, PLoS Comput. Biol..

[21]  Jaakko Nevalainen,et al.  Covariance matrix estimation for left-censored data , 2015, Comput. Stat. Data Anal..

[22]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[23]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[24]  Andrew McDavid,et al.  GRAPHICAL MODELS FOR ZERO-INFLATED SINGLE CELL GENE EXPRESSION. , 2016, The annals of applied statistics.

[25]  Arne Henningsen,et al.  Estimating Censored Regression Models in R using the censReg Package , 2012 .

[26]  Hongyu Zhao,et al.  CCLasso: correlation inference for compositional data through Lasso , 2015, Bioinform..

[27]  Paul M. Ruegger,et al.  Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships , 2013, Microbiome.

[28]  James S. Clark,et al.  Generalized joint attribute modeling for biodiversity analysis: median-zero, multivariate, multifarious data , 2017 .

[29]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[30]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[31]  J. Carlson,et al.  High-dimensional microbiome interactions shape host fitness , 2017, bioRxiv.

[32]  Francesca Ieva,et al.  Joint modeling of recurrent events and survival: a Bayesian non-parametric approach. , 2018, Biostatistics.

[33]  H. Zou,et al.  High dimensional semiparametric latent graphical model for mixed data , 2014, 1404.7236.

[34]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[35]  Jean M. Macklaim,et al.  Microbiome Datasets Are Compositional: And This Is Not Optional , 2017, Front. Microbiol..

[36]  Sayan Mukherjee,et al.  Naught all zeros in sequence count data are the same , 2018, bioRxiv.

[37]  Jesse R. Zaneveld,et al.  Normalization and microbial differential abundance strategies depend upon data characteristics , 2017, Microbiome.

[38]  Jean M. Macklaim,et al.  A multi-platform metabolomics approach identifies highly specific biomarkers of bacterial diversity in the vagina of pregnant and non-pregnant women , 2015, Scientific Reports.

[39]  Eddy J. Bautista,et al.  Longitudinal multi-omics of host–microbe dynamics in prediabetes , 2019, Nature.

[40]  Wei Jia,et al.  Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis , 2018, Nature Reviews Gastroenterology & Hepatology.

[41]  Jennifer M. Fettweis,et al.  The Integrative Human Microbiome Project , 2019, Nature.

[42]  Antonino Abbruzzo,et al.  $\ell_1$-Penalized censored Gaussian graphical model. , 2018, Biostatistics.

[43]  Maximum Pairwise Pseudo-likelihood Estimation of the Covariance Matrix from Left-Censored Data , 2015, Journal of agricultural, biological, and environmental statistics.

[44]  K. Gerald van den Boogaart,et al.  Analyzing Compositional Data with R , 2013 .

[45]  M. Laakso,et al.  Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort , 2017, Genome Biology.

[46]  the International Network Medicine Consortium The Integrative Human Microbiome Project , 2019 .

[47]  Pradeep Ravikumar,et al.  Ordinal Graphical Models: A Tale of Two Approaches , 2017, ICML.

[48]  J. Carlson,et al.  Microbiome interactions shape host fitness , 2018, Proceedings of the National Academy of Sciences.

[49]  Larry A. Wasserman,et al.  Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models , 2010, NIPS.

[50]  Kyle Bittinger,et al.  Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production , 2014, Gut.

[51]  Robert E. Johnson,et al.  Pseudo-likelihood Estimation of Multivariate Normal Parameters in the Presence of Left-Censored Data , 2015 .

[52]  T. Lazzarotto,et al.  Pregnancy outcome after early detection of bacterial vaginosis. , 2006, European journal of obstetrics, gynecology, and reproductive biology.

[53]  George Michailidis,et al.  Graphical Models for Ordinal Data , 2015, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[54]  Jun Wang,et al.  Quantitative microbiome profiling links gut community variation to microbial load , 2017, Nature.

[55]  Lin Schwarzkopf,et al.  Methods for normalizing microbiome data: An ecological perspective , 2018, Methods in Ecology and Evolution.