A Robust PTAS for Machine Covering and Packing

Minimizing the makespan or maximizing the minimum machine load are two of the most important and fundamental parallel machine scheduling problems. In an online scenario, jobs are consecutively added and/or deleted and the goal is to always maintain a (close to) optimal assignment of jobs to machines. The reassignment of a job induces a cost proportional to its size and the total cost for reassigning jobs must preferably be bounded by a constant r times the total size of added or deleted jobs. Our main result is that, for any e > 0, one can always maintain a (1 + e)-competitive solution for some constant reassignment factor r(e). For the minimum makespan problem this is the first improvement of the (2+e)-competitive algorithm with constant reassignment factor published in 1996 by Andrews, Goemans, and Zhang.

[1]  Leah Epstein,et al.  A robust APTAS for the classical bin packing problem , 2009, Math. Program..

[2]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[3]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[4]  N. Alon,et al.  Approximation schemes for scheduling on parallel machines , 1998 .

[5]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[6]  Jirí Sgall,et al.  On-line Scheduling , 1996, Online Algorithms.

[7]  Gerhard J. Woeginger,et al.  A polynomial-time approximation scheme for maximizing the minimum machine completion time , 1997, Oper. Res. Lett..

[8]  Yossi Azar,et al.  On-line load balancing , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[9]  Rudolf Fleischer,et al.  On‐line scheduling revisited , 2000 .

[10]  Lisa Zhang,et al.  Improved Bounds for On-line Load Balancing , 1996, COCOON.

[11]  Bala Kalyanasundaram,et al.  On-Line Load Balancing of Temporary Tasks , 1997, J. Algorithms.

[12]  Ramaswamy Chandrasekaran,et al.  Improved Bounds for the Online Scheduling Problem , 2003, SIAM J. Comput..

[13]  Jirí Sgall A Lower Bound for Randomized On-Line Multiprocessor Scheduling , 1997, Inf. Process. Lett..

[14]  Martin Skutella,et al.  Online Scheduling with Bounded Migration , 2004, ICALP.

[15]  Gerhard J. Woeginger,et al.  A Lower Bound for Randomized On-Line Scheduling Algorithms , 1994, Information Processing Letters.

[16]  Heinrich Müller,et al.  Effiziente Methoden der geometrischen Modellierung und der wissenschaftlichen Visualisierung, Dagstuhl Seminar 1997 , 1999, Effiziente Methoden der geometrischen Modellierung und der wissenschaftlichen Visualisierung.

[17]  Susanne Albers,et al.  Online algorithms: a survey , 2003, Math. Program..

[18]  Yossi Azar,et al.  On‐line machine covering , 1998 .

[19]  Jiri Sgall,et al.  On-line scheduling --- a survey , 1997 .

[20]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[21]  Rudolf Fleischer,et al.  Online Scheduling Revisited , 2000, ESA.

[22]  Jeffery R. Westbrook Load Balancing for Response Time , 2000, J. Algorithms.