Potassium-Containing α-MnO2 Nanotubes: The Impact of Hollow Regions on Electrochemistry

[1]  Z. Su,et al.  A core-shell porous MnO2/Carbon nanosphere composite as the anode of lithium-ion batteries , 2021 .

[2]  Jian-qiu Deng,et al.  Reduced graphene oxide thin layer induced lattice distortion in high crystalline MnO2 nanowires for high-performance sodium- and potassium-ion batteries and capacitors , 2021 .

[3]  Z. Su,et al.  Co3 O4 Polyhedron@MnO2 Nanotube Composite as Anode for High-Performance Lithium-Ion Batteries. , 2021, Small.

[4]  Xianyou Wang,et al.  Hollow urchin-like Al-doped α-MnO2−x as advanced sulfur host for high-performance lithium-sulfur batteries , 2021 .

[5]  Shangpeng Gao,et al.  Superior-Performance Aqueous Zinc-Ion Batteries Based on the In Situ Growth of MnO2 Nanosheets on V2CTX MXene. , 2021, ACS nano.

[6]  Z. Yin,et al.  MnO2‐Based Materials for Environmental Applications , 2021, Advanced materials.

[7]  T. Yew,et al.  Effect of Different Electrolytes on MnO2 Anodes in Lithium-Ion Batteries , 2021 .

[8]  Lisa M. Housel,et al.  Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution-deposition mechanism in aqueous Zn/α-MnO2 batteries , 2020, Energy & Environmental Science.

[9]  Sung Joo Kim,et al.  Unraveling the Dissolution-Mediated Reaction Mechanism of α-MnO2 Cathodes for Aqueous Zn-Ion Batteries. , 2020, Small.

[10]  J. Nan,et al.  Hollow MnO2 spheres/porous reduced graphene oxide as a cathode host for high-performance lithium-sulfur batteries , 2020, Journal of Solid State Chemistry.

[11]  Yang Liu,et al.  Hollow nitrogen-doped carbon/sulfur@MnO2 nanocomposite with structural and chemical dual-encapsulation for lithium-sulfur battery , 2020 .

[12]  Lisa M. Housel,et al.  Inhomogeneous structural evolution of silver-containing Alpha-MnO2 nanorods in sodium-ion batteries investigated by comparative transmission electron microscopy approach , 2019, Journal of Power Sources.

[13]  H. Xin,et al.  Atomic-level tunnel engineering of todorokite MnO2 for precise evaluation of lithium storage mechanisms by in situ transmission electron microscopy , 2019, Nano Energy.

[14]  S. Qiao,et al.  3D Hollow α-MnO2 Framework as an Efficient Electrocatalyst for Lithium-Oxygen Batteries. , 2019, Small.

[15]  M. H. Alfaruqi,et al.  POTASSIUM-INTERCALATED MANGANESE DIOXIDE AS LITHIUM-ION BATTERY CATHODES: A DENSITY FUNCTIONAL THEORY STUDY , 2019, SINERGI.

[16]  M. Hybertsen,et al.  Atomic Scale Account of the Surface Effect on Ionic Transport in Silver Hollandite , 2018, Chemistry of Materials.

[17]  G. Ceder,et al.  Revealing and Rationalizing the Rich Polytypism of Todorokite MnO2. , 2018, Journal of the American Chemical Society.

[18]  R. Cao,et al.  A Hollow-Structured Manganese Oxide Cathode for Stable Zn-MnO2 Batteries , 2018, Nanomaterials.

[19]  Lisa M. Housel,et al.  Investigation of α-MnO2 Tunneled Structures as Model Cation Hosts for Energy Storage. , 2018, Accounts of chemical research.

[20]  C. Ling,et al.  Manganese Dioxide As Rechargeable Magnesium Battery Cathode , 2017, Front. Energy Res..

[21]  A. Marschilok,et al.  Lithiation Mechanism of Tunnel‐Structured MnO2 Electrode Investigated by In Situ Transmission Electron Microscopy , 2017, Advanced materials.

[22]  M. Hybertsen,et al.  Visualization of lithium-ion transport and phase evolution within and between manganese oxide nanorods , 2017, Nature Communications.

[23]  A. Marschilok,et al.  Silver-Containing α-MnO2 Nanorods: Electrochemistry in Na-Based Battery Systems. , 2017, ACS applied materials & interfaces.

[24]  A. Marschilok,et al.  Tunnel Structured α-MnO2with Different Tunnel Cations (H+, K+, Ag+) as Cathode Materials in Rechargeable Lithium Batteries: The Role of Tunnel Cation on Electrochemistry , 2017 .

[25]  D. Bock,et al.  Potassium‐Based α‐Manganese Dioxide Nanofiber Binder‐Free Self‐Supporting Electrodes: A Design Strategy for High Energy Density Batteries , 2016 .

[26]  Pengfei Yan,et al.  Reversible aqueous zinc/manganese oxide energy storage from conversion reactions , 2016, Nature Energy.

[27]  A. Marschilok,et al.  MxMn₈O₁₆ (M = Ag or K) as promising cathode materials for secondary Mg based batteries: the role of the cation M. , 2016, Chemical communications.

[28]  Alexander B. Brady,et al.  Structural Defects of Silver Hollandite, Ag(x)Mn8O(y), Nanorods: Dramatic Impact on Electrochemistry. , 2015, ACS nano.

[29]  C. Ling,et al.  Manganese dioxides as rechargeable magnesium battery cathode; synthetic approach to understand magnesiation process , 2015 .

[30]  Jun Lu,et al.  Asynchronous Crystal Cell Expansion during Lithiation of K(+)-Stabilized α-MnO2. , 2015, Nano letters.

[31]  S. C. Parker,et al.  Surface properties of α-MnO2: relevance to catalytic and supercapacitor behaviour , 2014 .

[32]  M. Islam,et al.  Electrochemistry of Hollandite α-MnO2: Li-Ion and Na-Ion Insertion and Li2O Incorporation , 2013 .

[33]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[34]  H. Ahn,et al.  Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries , 2013 .

[35]  C. Ling,et al.  Capture Lithium in αMnO2: Insights from First Principles , 2012 .

[36]  Ruigang Zhang,et al.  α-MnO2 as a cathode material for rechargeable Mg batteries , 2012 .

[37]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[38]  R. Penner,et al.  Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. , 2011, ACS nano.

[39]  Zexiang Shen,et al.  Synthesis of Single-Crystal Tetragonal α-MnO2 Nanotubes , 2008 .

[40]  S. Suib Porous manganese oxide octahedral molecular sieves and octahedral layered materials. , 2008, Accounts of chemical research.

[41]  Wenjie Shen,et al.  Synthesis and Characterization of Ag−Hollandite Nanofibers and Its Catalytic Application in Ethanol Oxidation , 2007 .

[42]  C. Feng,et al.  Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries. , 2006, Inorganic chemistry.

[43]  S. Komaba,et al.  Characterization and lithium insertion characteristics of hollandite-type Ky(Mn1-xMx)O2 for rechargeable lithium battery electrodes , 2006 .

[44]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[45]  B. Ravel,et al.  ATHENA and ARTEMIS: interactive graphical data analysis using IFEFFIT , 2005 .

[46]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[47]  H. Yasuda,et al.  Preparation and Characterization of Open Tunnel Oxide α-MnO2 Precipitated by Ozone Oxidation , 2001 .

[48]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[49]  Pearson,et al.  White lines and d-electron occupancies for the 3d and 4d transition metals. , 1993, Physical review. B, Condensed matter.

[50]  W. Werner Towards a universal curve for electron attenuation: Elastic scattering data for 45 elements , 1992 .

[51]  E. Fanchon,et al.  The structure of K1.33Mn8O16 and cation ordering in hollandite-type structures , 1986 .