Quantum Locker Using a Novel Verification Algorithm and Its Experimental Realization in IBM Quantum Computer

It is well known that Grover's algorithm asymptotically transforms an equal superposition state into an eigenstate (of a given basis). Here, we demonstrate a verification algorithm based on weak measurement which can achieve the same purpose even if the qubit is not in an equal superposition state. The proposed algorithm highlights the distinguishability between any arbitrary single qubit superposition state and an eigenstate. We apply this algorithm to propose the scheme of a Quantum Locker, a protocol in which any legitimate party can verify his/her authenticity by using a newly developed quantum One-Time Password (OTP) and retrieve the necessary message from the locker. We formally explicate the working of quantum locker in association with the quantum OTP, which theoretically offers a much higher security against any adversary, as compared to any classical security device.

[1]  M. Mosca Quantum Searching Counting and Amplitude Ampli cation by Eigenvector Analysis , 1998 .

[2]  Ruediger Schack,et al.  Quantum authentication and key distribution using catalysis , 2000 .

[3]  G. Long,et al.  Phase Matching in Quantum Searching , 1999, quant-ph/9906020.

[4]  L. Lamata,et al.  Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience , 2016, 1611.07851.

[5]  Abhishek Shukla,et al.  Design and experimental realization of an optimal scheme for teleportation of an n-qubit quantum state , 2017, Quantum Information Processing.

[6]  Craig Metz,et al.  A One-Time Password System , 1996, RFC.

[7]  Ayan Majumder,et al.  Experimental Realization of Secure Multiparty Quantum Summation Using Five-Qubit IBM Quantum Computer on Cloud , 2017 .

[8]  Steven M. Bellovin,et al.  Limitations of the Kerberos authentication system , 1990, CCRV.

[9]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[10]  P. Oscar Boykin,et al.  A Proof of the Security of Quantum Key Distribution , 1999, Symposium on the Theory of Computing.

[11]  Takashi Mihara,et al.  Quantum identification schemes with entanglements , 2002 .

[12]  Anirban Pathak,et al.  Experimental realization of nondestructive discrimination of Bell states using a five-qubit quantum computer , 2017 .

[13]  Ari Mizel,et al.  Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole , 2017 .

[14]  J. Latorre,et al.  Experimental test of Mermin inequalities on a five-qubit quantum computer , 2016, 1605.04220.

[15]  S. Wehner,et al.  Entropic uncertainty and measurement reversibility , 2015, 1511.00267.

[16]  Bikash K. Behera,et al.  Experimental Demonstration of the No Hiding Theorem Using a 5 Qubit Quantum Computer , 2017 .

[17]  Bikash K. Behera,et al.  Experimental demonstration of non-local controlled-unitary quantum gates using a five-qubit quantum computer , 2017, Quantum Inf. Process..

[18]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[19]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[20]  Bikash K. Behera,et al.  Automated error correction in IBM quantum computer and explicit generalization , 2017, Quantum Inf. Process..

[21]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[22]  Maria Schuld,et al.  Implementing a distance-based classifier with a quantum interference circuit , 2017, 1703.10793.

[23]  P. Høyer Arbitrary phases in quantum amplitude amplification , 2000, quant-ph/0006031.

[24]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[25]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[26]  Markus Grassl,et al.  Generalized Grover Search Algorithm for Arbitrary Initial Amplitude Distribution , 1998, QCQC.

[27]  Bikash K. Behera,et al.  Experimental realization of quantum cheque using a five-qubit quantum computer , 2017, Quantum Information Processing.

[28]  Yang Sun,et al.  Phase matching condition for quantum search with a generalized initial state , 2002 .

[29]  U. Toronto,et al.  Analysis of generalized Grover quantum search algorithms using recursion equations , 2000, quant-ph/0010077.

[30]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[31]  I. Chuang,et al.  Quantum Digital Signatures , 2001, quant-ph/0105032.

[32]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[33]  M. Dušek,et al.  Quantum identification system , 1998, quant-ph/9809024.

[34]  G. Long Grover algorithm with zero theoretical failure rate , 2001, quant-ph/0106071.

[35]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[36]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[37]  L. Chew,et al.  Setting a disordered password on a photonic memory , 2016, 1611.00136.

[38]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[39]  P. Chamorro-Posada,et al.  Simple quantum password checking , 2015, 1501.02622.

[40]  Masahide Sasaki,et al.  Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing , 2016, Scientific Reports.

[41]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[42]  Howard N. Barnum Quantum secure identification using entanglement and catalysis , 1999 .

[43]  James R. Wootton,et al.  Repetition code of 15 qubits , 2017, 1709.00990.

[44]  Eli Biham,et al.  Grover's quantum search algorithm for an arbitrary initial mixed state , 2002 .

[45]  James R. Wootton Demonstrating non-Abelian braiding of surface code defects in a five qubit experiment , 2016, 1609.07774.

[46]  Prasanta K. Panigrahi,et al.  Quantum cheques , 2016, Quantum Inf. Process..

[47]  Bikash K. Behera,et al.  Generalization and demonstration of an entanglement-based Deutsch–Jozsa-like algorithm using a 5-qubit quantum computer , 2017, Quantum Information Processing.

[48]  Yang Liu,et al.  An Exact Quantum Search Algorithm with Arbitrary Database , 2014 .

[49]  Leslie Lamport,et al.  Password authentication with insecure communication , 1981, CACM.