A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process

[1]  Jaeyong Lee,et al.  Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site , 2020, Nature Communications.

[2]  Chunlong Ma,et al.  Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against Mpro and cathepsin L , 2020, Science Advances.

[3]  R. Hilgenfeld,et al.  SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging , 2020, Nature Chemical Biology.

[4]  Huan Sun,et al.  Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease , 2020, Nature Communications.

[5]  Uwe Mueller,et al.  FragMAX: the fragment-screening platform at the MAX IV Laboratory , 2020, Acta crystallographica. Section D, Structural biology.

[6]  James D. Firth,et al.  Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease , 2020, Nature Communications.

[7]  Bhupesh Goyal,et al.  Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy , 2020, ACS combinatorial science.

[8]  G. Klebe,et al.  F2X-Universal and F2X-Entry: Structurally Diverse Compound Libraries for Crystallographic Fragment Screening. , 2020, Structure.

[9]  A. Joachimiak,et al.  Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography , 2020, Nature Communications.

[10]  Vimal K. Maurya,et al.  Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) , 2020, Coronavirus Disease 2019 (COVID-19).

[11]  E. Sattely,et al.  Biosynthesis , 1981, Antibiotics.

[12]  L. Guddat,et al.  Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur , 2020, bioRxiv.

[13]  M. Sekijima,et al.  Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates , 2020, Scientific Reports.

[14]  R. Hilgenfeld,et al.  Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors , 2020, Science.

[15]  A. M. Leontovich,et al.  The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 , 2020, Nature Microbiology.

[16]  E. Holmes,et al.  A new coronavirus associated with human respiratory disease in China , 2020, Nature.

[17]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[18]  G. Gao,et al.  A Novel Coronavirus from Patients with Pneumonia in China, 2019 , 2020, The New England journal of medicine.

[19]  Chunlong Ma,et al.  Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease , 2020, Cell Research.

[20]  A. Sharff,et al.  Advances in automated data analysis and processing within autoPROC, combined with improved characterisation, mitigation and visualisation of the anisotropy of diffraction limits using STARANISO , 2018, Acta Crystallographica Section A Foundations and Advances.

[21]  Gwyndaf Evans,et al.  DIALS: implementation and evaluation of a new integration package , 2018, Acta crystallographica. Section D, Structural biology.

[22]  Jiahui Chen,et al.  Improvements to the APBS biomolecular solvation software suite , 2017, Protein science : a publication of the Protein Society.

[23]  Sebastian Kelm,et al.  A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density , 2017, Nature Communications.

[24]  Paul D. Adams,et al.  Polder maps: improving OMIT maps by excluding bulk solvent , 2017, Acta crystallographica. Section D, Structural biology.

[25]  N. Milas,et al.  The Sirius project. , 2014, Journal of synchrotron radiation.

[26]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[27]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[28]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[29]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[30]  X. Kang,et al.  Activation and maturation of SARS-CoV main protease , 2011, Protein & Cell.

[31]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[32]  Boceprevir , 2010, Drugs in R&D.

[33]  Y. Liu,et al.  Maturation Mechanism of Severe Acute Respiratory Syndrome (SARS) Coronavirus 3C-like Proteinase , 2010, The Journal of Biological Chemistry.

[34]  Felix Jonas,et al.  Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode , 2010, Protein & Cell.

[35]  Vincent B. Chen,et al.  MolProbity: all-atom structure validation for macromolecular crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[36]  Paul D Adams,et al.  Electronic Reprint Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow ): a Tool for Ligand Coordinate and Restraint Generation Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow): a Tool for Ligand Coordinate and Restraint Gener , 2022 .

[37]  Randy J. Read,et al.  Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias , 2008, Acta crystallographica. Section D, Biological crystallography.

[38]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[39]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[40]  Z. Rao,et al.  Production of Authentic SARS-CoV Mpro with Enhanced Activity: Application as a Novel Tag-cleavage Endopeptidase for Protein Overproduction , 2006, Journal of Molecular Biology.

[41]  Kaixian Chen,et al.  pH-dependent Conformational Flexibility of the SARS-CoV Main Proteinase (Mpro) Dimer: Molecular Dynamics Simulations and Multiple X-ray Structure Analyses , 2005, Journal of Molecular Biology.

[42]  M. Hsu,et al.  Mechanism of the Maturation Process of SARS-CoV 3CL Protease , 2005, Journal of Biological Chemistry.

[43]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[44]  Luhua Lai,et al.  Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase , 2004, Journal of Biological Chemistry.

[45]  Rolf Hilgenfeld,et al.  Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs , 2003, Science.

[46]  Rolf Hilgenfeld,et al.  Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain , 2002, The EMBO journal.

[47]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[48]  P. D. de Jong,et al.  Ligation-independent cloning of PCR products (LIC-PCR). , 1990, Nucleic acids research.

[49]  Yunheng Ji MORPHOLOGY , 1937, A Grammar of Italian Sign Language (LIS).

[50]  Clemens Vonrhein,et al.  Data processing and analysis with the autoPROC toolbox , 2011, Acta crystallographica. Section D, Biological crystallography.

[51]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.