Unit building block of the oligomeric chlorosomal antenna of the green photosynthetic bacterium Chloroflexus aurantiacus: modeling of nonlinear optical spectra

[1]  R. Monshouwer,et al.  Exciton (De)Localization in the LH2 Antenna of Rhodobacter sphaeroides As Revealed by Relative Difference Absorption Measurements of the LH2 Antenna and the B820 Subunit , 1999 .

[2]  V. Novoderezhkin,et al.  Exciton levels structure of antenna bacteriochlorophyll c aggregates in the green bacterium Chloroflexus aurantiacus as probed by 1.8–293 K fluorescence spectroscopy , 1999, FEBS letters.

[3]  V. Novoderezhkin,et al.  Exciton delocalization in the B808-866 antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump-probe spectroscopy. , 1999, Biophysical journal.

[4]  Robert Eugene Blankenship,et al.  Excitation delocalization in the bacteriochlorophyll c antenna of the green bacterium Chloroflexus aurantiacus as revealed by ultrafast pump‐probe spectroscopy , 1998, FEBS letters.

[5]  V. Sundström,et al.  Pump–probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach , 1997 .

[6]  S. Mukamel,et al.  Multiple Exciton Coherence Sizes in Photosynthetic Antenna Complexes viewed by Pump−Probe Spectroscopy , 1997 .

[7]  R. G. Alden,et al.  Calculations of Spectroscopic Properties of the LH2 Bacteriochlorophyll−Protein Antenna Complex from Rhodopseudomonas acidophila† , 1997 .

[8]  A. Freiberg,et al.  Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. , 1996, Biophysical journal.

[9]  V. Sundström,et al.  Exciton Delocalization Length in the B850 Antenna of Rhodobacter sphaeroides , 1996 .

[10]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[11]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[12]  K. Mauring,et al.  Spectral hole burning study of intact cells of green bacterium Chlorobium limicola , 1993, FEBS letters.

[13]  K. Mauring,et al.  Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning , 1992, FEBS letters.

[14]  Jasper Knoester,et al.  Optical properties of disordered molecular aggregates: a numerical study , 1991 .

[15]  W. W. Parson,et al.  Properties of the excited singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents , 1991 .

[16]  K. Griebenow,et al.  Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectra of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-fl , 1991 .

[17]  A. Freiberg,et al.  Long-range molecular order as an efficient strategy for light harvesting in photosynthesis , 1988, Nature.

[18]  R. van Grondelle,et al.  Linear dichroism of chlorosomes from chloroflexus aurantiacus in compressed gels and electric fields. , 1988, Biophysical journal.

[19]  Z. Fetisova,et al.  Strong orientational ordering of the near‐infrared transition moment vectors of light‐harvesting antenna bacterioviridin in chromatophores of the green photosynthetic bacterium Chlorobium limicola , 1986 .

[20]  L. Staehelin,et al.  Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus , 1981, Journal of bacteriology.

[21]  J. Olson Chlorophyll organization in green photosynthetic bacteria. , 1980, Biochimica et biophysica acta.