Efficient evaluation of joint pdf of a L\'evy process, its extremum, and hitting time of the extremum

For L\'evy processes with exponentially decaying tails of the L\'evy density, we derive integral representations for the joint cpdf $V$ of $(X_T, \bar X_T,\tau_T)$ (the process, its supremum evaluated at $T<+\infty$, and the first time at which $X$ attains its supremum). The first representation is a Riemann-Stieltjes integral in terms of the (cumulative) probability distribution of the supremum process and joint probability distribution function of the process and its supremum process. The integral is evaluated using a combination an analog of the trapezoid rule. The second representation is amenable to more accurate albeit slower calculations. We calculate explicitly the Laplace-Fourier transform of $V$ w.r.t. all arguments, apply the inverse transforms, and reduce the problem to evaluation of the sum of 5D integrals. The integrals can be evaluated using the summation by parts in the infinite trapezoid rule and simplified trapezoid rule; the inverse Laplace transforms can be calculated using the Gaver-Wynn-Rho algorithm. Under additional conditions on the domain of analyticity of the characteristic exponent, the speed of calculations is greatly increased using the conformal deformation technique. For processes of infinite variation, the program in Matlab running on a Mac with moderate characteristics achieves the precision better than E-05 in a fraction of a second; the precision better than E-10 is achievable in dozens of seconds. As the order of the process (the analog of the Blumenthal-Getoor index) decreases, the CPU time increases, and the best accuracy achievable with double precision arithmetic decreases.

[1]  S. Levendorskii,et al.  Efficient evaluation of expectations of functions of a stable Lévy process and its extremum , 2022, SSRN Electronic Journal.

[2]  S. Boyarchenko,et al.  Efficient Evaluation of Expectations of Functions of a Lévy Process and Its Extremum , 2022, SSRN Electronic Journal.

[3]  S. Boyarchenko,et al.  Levy Models Amenable to Efficient Calculations , 2022, SSRN Electronic Journal.

[4]  J. Lars Kirkby,et al.  SINH-Acceleration for B-Spline Projection with Option Pricing Applications , 2021, SSRN Electronic Journal.

[5]  S. Levendorskii,et al.  Conformal Accelerations Method and Efficient Evaluation of Stable Distributions , 2020, Acta Applicandae Mathematicae.

[6]  S. Levendorskii,et al.  Static and semistatic hedging as contrarian or conformist bets , 2019, Mathematical Finance.

[7]  M. Alomari Two-Point Quadrature Rules for Riemann–Stieltjes Integrals with Lp–error estimates , 2018, Moroccan Journal of Pure and Applied Analysis.

[8]  Aleksandar Mijatovi'c,et al.  Geometrically Convergent Simulation of the Extrema of Lévy Processes , 2018, Math. Oper. Res..

[9]  S. Levendorskii,et al.  Sinh-Acceleration: Efficient Evaluation of Probability Distributions, Option Pricing, and Monte-Carlo Simulations , 2018, International Journal of Theoretical and Applied Finance.

[10]  S. Levendorskii,et al.  Pricing discrete barrier options and credit default swaps under Lévy processes , 2014 .

[11]  S. Levendorskii Method of Paired Contours and Pricing Barrier Options and CDs of Long Maturities , 2013 .

[12]  Alexey Kuznetsov,et al.  On the Convergence of the Gaver-Stehfest Algorithm , 2013, SIAM J. Numer. Anal..

[13]  S. Levendorskii,et al.  Efficient Laplace Inversion, Wiener-Hopf Factorization and Pricing Lookbacks , 2012 .

[14]  S. Levendorskii,et al.  Efficient Pricing and Reliable Calibration in the Heston Model , 2012 .

[15]  Sever Silvestru Dragomir,et al.  Approximating the Riemann-Stieltjes integral by a trapezoidal quadrature rule with applications , 2011, Math. Comput. Model..

[16]  S. Levendorskii,et al.  Prices of Barrier and First-Touch Digital Options in Levy-Driven Models, Near Barrier , 2009 .

[17]  Sergei Levendorskii,et al.  Fast and accurate pricing of barrier options under Lévy processes , 2009, Finance Stochastics.

[18]  S. Boyarchenko,et al.  Double Barrier Options in Regime-Switching Hyper-Exponential Jump-Diffusion Models , 2009 .

[19]  Sergei Levendorskii,et al.  Prices and Sensitivities of Barrier and First-Touch Digital Options in Levy-Driven Models , 2008 .

[20]  Liming Feng,et al.  PRICING DISCRETELY MONITORED BARRIER OPTIONS AND DEFAULTABLE BONDS IN LÉVY PROCESS MODELS: A FAST HILBERT TRANSFORM APPROACH , 2008 .

[21]  Ward Whitt,et al.  A Unified Framework for Numerically Inverting Laplace Transforms , 2006, INFORMS J. Comput..

[22]  Peter P. Valko,et al.  Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion , 2004 .

[23]  J. Abate,et al.  Multi‐precision Laplace transform inversion , 2004 .

[24]  S. Levendorskii,et al.  Perpetual American options under Levy processes , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[25]  S. Levendorskii,et al.  Barrier options and touch- and-out options under regular Lévy processes of exponential type , 2002 .

[26]  Svetlana Boyarchenko,et al.  Perpetual American Options Under L[e-acute]vy Processes , 2001, SIAM J. Control. Optim..

[27]  Svetlana Boyarchenko,et al.  OPTION PRICING FOR TRUNCATED LÉVY PROCESSES , 2000 .

[28]  P. Carr Randomization and the American Put , 1996 .

[29]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[30]  Ward Whitt,et al.  Numerical inversion of probability generating functions , 1992, Oper. Res. Lett..

[31]  Ward Whitt,et al.  The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..

[32]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[33]  S. Levendorskii,et al.  Non-Gaussian Merton-Black-Scholes theory , 2002 .

[34]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .