Mechanisms of flower coloring and eco-evolutionary implications of massive blooming events in the Atacama Desert

The Atacama Desert, one of the driest places on earth, holds a rich biodiversity that becomes most appreciable in years when unusual rainfall accumulation triggers a phenomenon of explosive development of ephemeral herbaceous and woody desert species known as “desierto florido” or “blooming desert.” Despite the scientific importance of this unique phenomenon only few studies have addressed the mechanisms of flower phenotypic divergence under the fluctuating environment provided by this recurrent event. We investigated the mechanisms of floral color diversity in Cistanthe longiscapa (Montiaceae), a dominant species across the ephemeral blooming landscape of Atacama Desert. Our analyses show that the variation in colors of C. longiscapa flowers result from petals containing betalain pigments with different absorption spectra. The different pigment composition of petals causes flower color differences in the visible and ultraviolet (UV) range of the spectrum. Through color vision models we show that C. longiscapa flowers are highly polymorphic in their color appearance for insect pollinators. Our results highlight the variable nature in flower color of C. longiscapa varieties blooming simultaneously in a geographical restricted area. Given the importance of color in attracting floral visitors, the observed color variability could contribute to increased cross pollination in extreme desert conditions, while accounting for complex and fluctuating histories of plant-pollinator interactions.

[1]  A. Orellana,et al.  Transcriptomic analysis of the C3-CAM transition in Cistanthe longiscapa, a drought tolerant plant in the Atacama Desert , 2022, bioRxiv.

[2]  G. Pyke,et al.  Flower Color Evolution and the Evidence of Pollinator-Mediated Selection , 2021, Frontiers in Plant Science.

[3]  E. Narbona,et al.  Painting the green canvas: how pigments produce flower colours , 2021, The Biochemist.

[4]  I. Sadowska-Bartosz,et al.  Biological Properties and Applications of Betalains , 2021, Molecules.

[5]  E. Senden,et al.  What Maintains Flower Colour Variation within Populations? , 2021, Trends in ecology & evolution.

[6]  Jair E. Garcia,et al.  Why Variation in Flower Color May Help Reproductive Success in the Endangered Australian Orchid Caladenia fulva , 2021, Frontiers in Plant Science.

[7]  E. Narbona,et al.  The effects of pollination, herbivory and autonomous selfing on the maintenance of flower colour variation in Silene littorea. , 2020, Plant biology.

[8]  D. Stavenga,et al.  Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. , 2020, Annual review of entomology.

[9]  R. Menzel,et al.  Enhanced UV-Reflection Facilitated a Shift in the Pollination System of the Red Poppy, Papaver rhoeas (Papaveraceae) , 2020, Plants.

[10]  D. Stavenga,et al.  Highly different flavonol content explains geographic variations in the UV reflecting properties of flowers of the corn poppy, Papaver rhoeas (Papaveraceae). , 2020, Phytochemistry.

[11]  Tao Feng,et al.  The evolution of betalain biosynthesis in Caryophyllales. , 2019, The New phytologist.

[12]  Hugo Gruson,et al.  pavo 2.0: new tools for the spectral and spatial analysis of colour in R , 2018, bioRxiv.

[13]  Mauricio Galleguillos,et al.  GIMMS NDVI time series reveal the extent, duration, and intensity of "blooming desert" events in the hyper-arid Atacama Desert, Northern Chile , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[14]  D. Stavenga,et al.  Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals , 2019, Journal of Comparative Physiology A.

[15]  Jair E. Garcia,et al.  Flower signal variability overwhelms receptor-noise and requires plastic color learning in bees , 2018, Behavioral Ecology.

[16]  B. Hansson,et al.  Biosynthetic and Functional Color–Scent Associations in Flowers of Papaver nudicaule and Their Impact on Pollinators , 2018, Chembiochem : a European journal of chemical biology.

[17]  P. Rudall,et al.  Ultrastructure and optics of the prism‐like petal epidermal cells of Eschscholzia californica (California poppy) , 2018, The New phytologist.

[18]  E. Narbona,et al.  Flower colour polymorphism in the Mediterranean Basin: occurrence, maintenance and implications for speciation. , 2018, Plant biology.

[19]  Jair E. Garcia,et al.  The path to colour discrimination is S-shaped: behaviour determines the interpretation of colour models , 2017, Journal of Comparative Physiology A.

[20]  Doekele G Stavenga,et al.  Functional optics of glossy buttercup flowers , 2017, Journal of The Royal Society Interface.

[21]  Federico Roda,et al.  Hybridization in Plants: Old Ideas, New Techniques[OPEN] , 2016, Plant Physiology.

[22]  Johannes Spaethe,et al.  Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture? , 2016, PloS one.

[23]  Jordi Bosch,et al.  Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. , 2016, Annals of botany.

[24]  T. Ashman,et al.  Macroevolutionary patterns of ultraviolet floral pigmentation explained by geography and associated bioclimatic factors , 2016, The New phytologist.

[25]  K. Gould,et al.  Are betalain pigments the functional homologues of anthocyanins in plants , 2015 .

[26]  D. Stavenga,et al.  Coloration of the Chilean Bellflower, Nolana paradoxa, interpreted with a scattering and absorbing layer stack model , 2015, Planta.

[27]  D. Joyce,et al.  Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species , 2015, Front. Plant Sci..

[28]  J. Holtum,et al.  Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. , 2014, Journal of experimental botany.

[29]  M. Giurfa,et al.  Cognitive components of color vision in honey bees: how conditioning variables modulate color learning and discrimination , 2014, Journal of Comparative Physiology A.

[30]  B. Schatz,et al.  Floral scent emitted by white and coloured morphs in orchids. , 2014, Phytochemistry.

[31]  R. Menzel,et al.  Visual generalization in honeybees: evidence of peak shift in color discrimination , 2014, Journal of Comparative Physiology A.

[32]  A. Ellis,et al.  Floral polymorphism and the fitness implications of attracting pollinating and florivorous insects. , 2014, Annals of botany.

[33]  The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions , 2014, Journal of Comparative Physiology A.

[34]  S. Diamond,et al.  The spatial patterns of directional phenotypic selection. , 2013, Ecology letters.

[35]  H. Arathi,et al.  Floral longevity and autonomous selfing are altered by pollination and water availability in Collinsia heterophylla. , 2013, Annals of botany.

[36]  M. Arroyo,et al.  Evolutionary lag times and recent origin of the biota of an ancient desert (Atacama–Sechura) , 2013, Proceedings of the National Academy of Sciences.

[37]  Adrian G. Dyer,et al.  Honeybees (Apis mellifera) Learn Color Discriminations via Differential Conditioning Independent of Long Wavelength (Green) Photoreceptor Modulation , 2012, PloS one.

[38]  J. Boisier,et al.  Climate change along the arid coast of northern Chile , 2012 .

[39]  M. Rosa,et al.  Parallel evolution of angiosperm colour signals: common evolutionary pressures linked to hymenopteran vision , 2012, Proceedings of the Royal Society B: Biological Sciences.

[40]  T. Yahara,et al.  Relative Role of Flower Color and Scent on Pollinator Attraction: Experimental Tests using F1 and F2 Hybrids of Daylily and Nightlily , 2012, PloS one.

[41]  M. Vorobyev,et al.  Honey Bee Vision in Relation to Flower Patterns , 2012 .

[42]  Ullrich Steiner,et al.  Directional scattering from the glossy flower of Ranunculus: how the buttercup lights up your chin , 2012, Journal of The Royal Society Interface.

[43]  Shuang‐Quan Huang,et al.  Fluctuating selection by water level on gynoecium colour polymorphism in an aquatic plant. , 2010, Annals of botany.

[44]  M. Giurfa,et al.  Aversive Reinforcement Improves Visual Discrimination Learning in Free-Flying Honeybees , 2010, PloS one.

[45]  F. Pérez,et al.  Pollen Limitation and Reproductive Assurance in the Flora of the Coastal Atacama Desert , 2010, International Journal of Plant Sciences.

[46]  S. Johnson The pollination niche and its role in the diversification and maintenance of the southern African flora , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  J. DiBattista,et al.  It's about time: the temporal dynamics of phenotypic selection in the wild. , 2009, Ecology letters.

[48]  Yoshikazu Tanaka,et al.  Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. , 2008, The Plant journal : for cell and molecular biology.

[49]  M. Vorobyev,et al.  Tetrachromacy in a butterfly that has eight varieties of spectral receptors , 2008, Proceedings of the Royal Society B: Biological Sciences.

[50]  Martin Burd,et al.  Bateman’s principle and plant reproduction: The role of pollen limitation in fruit and seed set , 2008, The Botanical Review.

[51]  M. Giurfa,et al.  The cognitive implications of asymmetric color generalization in honeybees , 2008, Animal Cognition.

[52]  D. Schemske,et al.  SPATIAL DIFFERENTIATION FOR FLOWER COLOR IN THE DESERT ANNUAL LINANTHUS PARRYAE: WAS WRIGHT RIGHT? , 2007, Evolution; international journal of organic evolution.

[53]  F. Schiestl,et al.  Odour and colour polymorphism in the food-deceptive orchid Dactylorhiza romana , 2007, Plant Systematics and Evolution.

[54]  David W. Lee Nature's palette , 2007 .

[55]  M. Arroyo,et al.  Ancestral reconstruction of flower morphology and pollination systems in Schizanthus (Solanaceae). , 2006, American journal of botany.

[56]  S. Kalisz,et al.  The Evolutionary Enigma of Mixed Mating Systems in Plants: Occurrence, Theoretical Explanations, and Empirical Evidence , 2005 .

[57]  F. Schiestl On the success of a swindle: pollination by deception in orchids , 2005, Naturwissenschaften.

[58]  H. Kugler UV-Musterungen auf Blüten und ihr Zustandekommen , 1962, Planta.

[59]  A. Ippolito,et al.  POLLINATOR PREFERENCES FOR NICOTIANA ALATA, N. FORGETIANA, AND THEIR F1 HYBRIDS , 2004, Evolution; international journal of organic evolution.

[60]  F. Frey OPPOSING NATURAL SELECTION FROM HERBIVORES AND PATHOGENS MAY MAINTAIN FLORAL‐COLOR VARIATION IN CLAYTONIA VIRGINICA (PORTULACACEAE) , 2004, Evolution; international journal of organic evolution.

[61]  Michele R. Dudash,et al.  Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences , 2004 .

[62]  Martin Giurfa,et al.  Conditioning procedure and color discrimination in the honeybee Apis mellifera , 2004, Naturwissenschaften.

[63]  Lars Chittka,et al.  The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency , 1992, Journal of Comparative Physiology A.

[64]  Christa Neumeyer,et al.  Simultaneous color contrast in the honeybee , 1980, Journal of comparative physiology.

[65]  R. Menzel,et al.  The spectral input systems of hymenopteran insects and their receptor-based colour vision , 2004, Journal of Comparative Physiology A.

[66]  C. Körner,et al.  Altitudinal differences in flower traits and reproductive allocation , 2004 .

[67]  Rebecca E. Irwin,et al.  THE ROLE OF HERBIVORES IN THE MAINTENANCE OF A FLOWER COLOR POLYMORPHISM IN WILD RADISH , 2003 .

[68]  T. Goldsmith,et al.  The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus , 2003, Journal of Comparative Physiology A.

[69]  D. Strack,et al.  Recent advances in betalain research. , 2003, Phytochemistry.

[70]  D. Schemske,et al.  PERSPECTIVE: EVOLUTION OF FLOWER COLOR IN THE DESERT ANNUAL LINANTHUS PARRYAE: WRIGHT REVISITED , 2001, Evolution; international journal of organic evolution.

[71]  Fabian M Jaksic Ecological effects of El Niño in terrestrial ecosystems of western South America , 2001 .

[72]  A. Smithson,et al.  Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soò , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Randolf Menzel,et al.  Colour thresholds and receptor noise: behaviour and physiology compared , 2001, Vision Research.

[74]  L. Chittka,et al.  The evolution of color vision in insects. , 2001, Annual review of entomology.

[75]  Daniel Osorio,et al.  Colourful objects through animal eyes , 2001 .

[76]  S. Barrett,et al.  A comparative analysis of pollen limitation in flowering plants , 2000 .

[77]  J. Armesto,et al.  Vegetation changes and sequential flowering after rain in the southern Atacama Desert , 1999 .

[78]  D. Schemske,et al.  Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Vorobyev,et al.  Receptor noise as a determinant of colour thresholds , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[80]  T. Bataillon,et al.  The Evolution of Self‐Fertilization in Perennials , 1997, The American Naturalist.

[81]  R. Brandt,et al.  HOW DO INSECT POLLINATORS DISCRIMINATE COLORS , 1997 .

[82]  R. Brandt,et al.  Metric Analysis of Threshold Spectral Sensitivity in the Honeybee , 1997, Vision Research.

[83]  M. Wink Compartmentation of Secondary Metabolites and Xenobiotics in Plant Vacuoles , 1997 .

[84]  V. Grant,et al.  Modes and origins of mechanical and ethological isolation in angiosperms. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[85]  H. A. Stafford Anthocyanins and betalains: evolution of the mutually exclusive pathways , 1994 .

[86]  J. Armesto,et al.  Plant communities of the fog-free coastal desert of Chile: plant strategies in a fluctuating environment , 1993 .

[87]  Vickery,et al.  Pollinator preferences for yellow, orange, and red flowers of Mimulus verbenaceus and M. cardinalis , 1992 .

[88]  Werner Backhaus,et al.  Color opponent coding in the visual system of the honeybee , 1991, Vision Research.

[89]  M. Hershkovitz Taxonomic notes on Cistanthe, Calandrinia, and Talinum (Portulacaceae) , 1991 .

[90]  H. Mooney,et al.  The phytogeography and ecology of the coastal Atacama and Peruvian deserts , 1991 .

[91]  Juan J. Armesto,et al.  Effects of aridity on plant diversity in the northern Chilean Andes: results of a natural experiment , 1988 .

[92]  C. Stirton,et al.  Pigment distribution, light reflection and cell structure in petals , 1981 .

[93]  O. V. Helversen The Relationship between Difference in Stimuli and Choice Frequency in Training Experiments with the Honeybee , 1972 .

[94]  Harold A. Mooney,et al.  THE ECOLOGY OF ARCTIC AND ALPINE PLANTS , 1968 .

[95]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[96]  H. G. Baker,et al.  SELF‐COMPATIBILITY AND ESTABLISHMENT AFTER ‘“LONG‐DISTANCE” DISPERSAL , 1955 .

[97]  V. Grant,et al.  POLLINATION SYSTEMS AS ISOLATING MECHANISMS IN ANGIOSPERMS , 1949, Evolution; international journal of organic evolution.

[98]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[99]  Rodolfo Amando Philippi Florula Atacamensis; seu, Enumeratio plantarum, quas in itinere per desertum Atacamense , 1860 .