ATDT: Autonomous Template-Based Detection and Tracking of Objects from Airborne Camera

This paper describes the proposed ATDT approach for autonomous template-based detection and tracking from a moving airborne camera or an electro-optical (EO) device. The advantages of the proposed method ATDT is that it is fully autonomous (no human involvement is needed; in the experiment the human was only involved to navigate the UAV not for any of the steps of the video analysis) replacing the need of human operators for video analytics tasks, it can be used on board UAV, is computationally lean and can operate in real time.

[1]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[2]  Saito,et al.  Automatic Threshold Setting for the Sequential Similarity Detection Algorithm , 1976, IEEE Transactions on Computers.

[3]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[4]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[5]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[6]  Darius Burschka,et al.  Adaptive and Generic Corner Detection Based on the Accelerated Segment Test , 2010, ECCV.

[7]  Robert Laganiere,et al.  OpenCV 2 Computer Vision Application Programming Cookbook , 2011 .

[8]  Bill Triggs,et al.  Detecting Keypoints with Stable Position, Orientation, and Scale under Illumination Changes , 2004, ECCV.

[9]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[10]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[11]  TuytelaarsTinne,et al.  Local invariant feature detectors , 2008 .

[12]  William K. Pratt,et al.  Correlation Techniques of Image Registration , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[13]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[15]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[16]  Pietro Perona,et al.  Weakly Supervised Scale-Invariant Learning of Models for Visual Recognition , 2007, International Journal of Computer Vision.

[17]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[18]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[19]  Plamen Angelov,et al.  ARTOD: Autonomous Real Time Objects Detection by a Moving Camera Using Recursive Density Estimation , 2016 .

[20]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[21]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[22]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[23]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[24]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[25]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..