Skeleton matching with applications in severe weather detection

Abstract Severe weather conditions cause an enormous amount of damages around the globe. Bow echo patterns in radar images are associated with a number of these destructive conditions such as damaging winds, hail, thunderstorms, and tornadoes. They are detected manually by meteorologists. In this paper, we propose an automatic framework to detect these patterns with high accuracy by introducing novel skeletonization and shape matching approaches. In this framework, first we extract regions with high probability of occurring bow echo from radar images and apply our skeletonization method to extract the skeleton of those regions. Next, we prune these skeletons using our innovative pruning scheme with fuzzy logic. Then, using our proposed shape descriptor, Skeleton Context, we can extract bow echo features from these skeletons in order to use them in shape matching algorithm and classification step. The output of classification indicates whether these regions are bow echo with over 97% accuracy.

[1]  Wenyu Liu,et al.  Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  F. Mora-Camino,et al.  Studies in Fuzziness and Soft Computing , 2011 .

[3]  Xing Zhang,et al.  A skeleton pruning algorithm based on information fusion , 2013, Pattern Recognit. Lett..

[4]  Miriah D. Meyer,et al.  Visually Comparing Weather Features in Forecasts , 2016, IEEE Transactions on Visualization and Computer Graphics.

[5]  Robert H. Johns,et al.  The Bow Echo and MCV Experiment: Observations and Opportunities , 2004 .

[6]  James Zijun Wang,et al.  Severe Thunderstorm Detection by Visual Learning Using Satellite Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[8]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[9]  Punam K. Saha,et al.  A survey on skeletonization algorithms and their applications , 2016, Pattern Recognit. Lett..

[10]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[11]  James Zijun Wang,et al.  2016 Ieee International Conference on Big Data (big Data) Shape Matching Using Skeleton Context for Automated Bow Echo Detection , 2022 .

[12]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[13]  Adam Krzyzak,et al.  Piecewise Linear Skeletonization Using Principal Curves , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Matthew J. Bunkers,et al.  Severe Convective Windstorms over the Northern High Plains of the United States , 2003 .

[15]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[16]  Longin Jan Latecki,et al.  Skeleton pruning as trade-off between skeleton simplicity and reconstruction error , 2013, Science China Information Sciences.

[17]  T. T. Fujita,et al.  Manual of downburst identification for Project NIMROD. [atmospheric circulation , 1978 .

[18]  H. Blum Biological shape and visual science (part I) , 1973 .

[19]  Kaleem Siddiqi,et al.  Robust and efficient skeletal graphs , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[20]  James Zijun Wang,et al.  Locating visual storm signatures from satellite images , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[21]  Jun Yu,et al.  Complex Object Correspondence Construction in Two-Dimensional Animation , 2011, IEEE Transactions on Image Processing.

[22]  Dmitry B. Goldgof,et al.  Tracking Nonrigid Motion and Structure from 2D Satellite Cloud Images without Correspondences , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  R. Przybylinski The Bow Echo: Observations, Numerical Simulations, and Severe Weather Detection Methods , 1995 .

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[26]  Melvin E. D. Jacobson,et al.  Skeleton Graph Generation for Feature Shape Description , 2000 .

[27]  Markus Ilg,et al.  Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Matthew J. Bunkers,et al.  Radar Observations of the Early Evolution of Bow Echoes , 2004 .

[29]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[30]  Andrew W. Fitzgibbon,et al.  Real-time human pose recognition in parts from single depth images , 2011, CVPR 2011.

[31]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[32]  Meng Wang,et al.  Multimodal Deep Autoencoder for Human Pose Recovery , 2015, IEEE Transactions on Image Processing.

[33]  M. K. Luhandjula Studies in Fuzziness and Soft Computing , 2013 .

[34]  Longin Jan Latecki,et al.  Path Similarity Skeleton Graph Matching , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Junsong Yuan,et al.  Robust Part-Based Hand Gesture Recognition Using Kinect Sensor , 2013, IEEE Transactions on Multimedia.

[36]  Dewen Hu,et al.  Graph-based image segmentation using directional nearest neighbor graph , 2012, Science China Information Sciences.

[37]  Shree K. Nayar,et al.  Contrast Restoration of Weather Degraded Images , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.