Incremental Learning With Sample Queries

The classical theory of pattern recognition assumes labeled examples appear according to unknown underlying class conditional probability distributions where the pattern classes are picked randomly in a passive manner according to their a priori probabilities. This paper presents experimental results for an incremental nearest-neighbor learning algorithm which actively selects samples from different pattern classes according to a querying rule as opposed to the a priori probabilities. The amount of improvement of this query-based approach over the passive batch approach depends on the complexity of the Bayes rule.