A novel clustering approach: Artificial Bee Colony (ABC) algorithm

Artificial Bee Colony (ABC) algorithm which is one of the most recently introduced optimization algorithms, simulates the intelligent foraging behavior of a honey bee swarm. Clustering analysis, used in many disciplines and applications, is an important tool and a descriptive task seeking to identify homogeneous groups of objects based on the values of their attributes. In this work, ABC is used for data clustering on benchmark problems and the performance of ABC algorithm is compared with Particle Swarm Optimization (PSO) algorithm and other nine classification techniques from the literature. Thirteen of typical test data sets from the UCI Machine Learning Repository are used to demonstrate the results of the techniques. The simulation results indicate that ABC algorithm can efficiently be used for multivariate data clustering.

[1]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[2]  Yee Leung,et al.  Clustering by Scale-Space Filtering , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Andries Petrus Engelbrecht,et al.  Particle swarm optimization method for image clustering , 2005, Int. J. Pattern Recognit. Artif. Intell..

[4]  Reda Younsi,et al.  A New Artificial Immune System Algorithm for Clustering , 2004, IDEAL.

[5]  Derviş Karaboğa,et al.  NEURAL NETWORKS TRAINING BY ARTIFICIAL BEE COLONY ALGORITHM ON PATTERN CLASSIFICATION , 2009 .

[6]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[7]  Anil K. Jain,et al.  Artificial neural networks for feature extraction and multivariate data projection , 1995, IEEE Trans. Neural Networks.

[8]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[9]  James C. Bezdek,et al.  Generalized clustering networks and Kohonen's self-organizing scheme , 1993, IEEE Trans. Neural Networks.

[10]  Hichem Frigui,et al.  A Robust Competitive Clustering Algorithm With Applications in Computer Vision , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Francesco Masulli,et al.  Soft Computing Applications , 2003 .

[12]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[13]  Shu-Hsien Liao,et al.  Artificial neural networks classification and clustering of methodologies and applications - literature analysis from 1995 to 2005 , 2007, Expert Syst. Appl..

[14]  Geoffrey I. Webb,et al.  MultiBoosting: A Technique for Combining Boosting and Wagging , 2000, Machine Learning.

[15]  Sam Kwong,et al.  Ant Colony Clustering and Feature Extraction for Anomaly Intrusion Detection , 2006, Swarm Intelligence in Data Mining.

[16]  Finn Verner Jensen,et al.  Introduction to Bayesian Networks , 2008, Innovations in Bayesian Networks.

[17]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[18]  Yeuvo Jphonen,et al.  Self-Organizing Maps , 1995 .

[19]  Paul Compton,et al.  Knowledge in Context: A Strategy for Expert System Maintenance , 1990, Australian Joint Conference on Artificial Intelligence.

[20]  Bing Sun,et al.  Numerical solution to the optimal feedback control of continuous casting process , 2007, J. Glob. Optim..

[21]  Sandra Paterlini,et al.  Evolutionary Approaches for Cluster Analysis , 2003 .

[22]  John G. Cleary,et al.  K*: An Instance-based Learner Using and Entropic Distance Measure , 1995, ICML.

[23]  Ivanoe De Falco,et al.  Facing classification problems with Particle Swarm Optimization , 2007, Appl. Soft Comput..

[24]  Dervis Karaboga,et al.  Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems , 2007, IFSA.

[25]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[26]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[27]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[28]  Manish Sarkar,et al.  A clustering algorithm using an evolutionary programming-based approach , 1997, Pattern Recognit. Lett..

[29]  KarabogaDervis,et al.  A powerful and efficient algorithm for numerical function optimization , 2007 .

[30]  Kevin Cheng,et al.  An ACO-Based Clustering Algorithm , 2006, ANTS Workshop.

[31]  Ron Kohavi,et al.  Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid , 1996, KDD.

[32]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[33]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[34]  Sandra Paterlini,et al.  Differential evolution and particle swarm optimisation in partitional clustering , 2006, Comput. Stat. Data Anal..

[35]  Emanuel Falkenauer,et al.  Genetic Algorithms and Grouping Problems , 1998 .

[36]  Boris Mirkin,et al.  Mathematical Classification and Clustering , 1996 .

[37]  H. Altay Güvenir,et al.  Classification by Voting Feature Intervals , 1997, ECML.

[38]  Magdalene Marinaki,et al.  A hybrid stochastic genetic–GRASP algorithm for clustering analysis , 2008, Oper. Res..

[39]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[40]  B. Kulkarni,et al.  An ant colony approach for clustering , 2004 .

[41]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[42]  Dervis Karaboga,et al.  Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks , 2007, MDAI.