Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies

Abstract• Five temperate broad-leaved tree species were compared with respect to their water consumption strategies under ample and restricted water supply. We measured synchronously leaf conductance (gL) in the sun canopy, xylem sap flux (Js) and leaf water potential (predawn, ψpd and noon, ψnoon) in adult trees in a mixed stand and related them to the fluctuations in vapor pressure deficit (D) and soil moisture.• Maximum gL was particularly high in F. excelsior, C. betulus and T. cordata and revealed a higher D sensitivity. ψpd remained constantly high in A. pseudoplatanus, C. betulus and F. excelsior, but decreased in T. cordata and F. sylvatica with decreasing soil moisture.• Jsddecreased linearly with decreasing soil matrix potential in all species except for F. excelsior. Apparent hydraulic conductance in the soil-to-leaf flow path (Lc) was higher in A. pseudoplatanus than in the other species.• F. sylvatica maintained a low maximum gL and reduced Jsd markedly upon drought, but faced severe decreases in ψpd and ψnoon. F. excelsior represents an opposite strategy with high maximum gL and stable ψpd.• The species drought sensitivity increases in the sequence F. excelsior < C. betulus < T. cordata < A. pseudoplatanus < F. sylvatica.Résumé• Les stratégies de consommation d’eau de cinq espèces d’arbres feuillus tempérés ont été comparées sous approvisionnement en eau suffisant ou limité. De façon synchrone nous avons mesuré la conductance hydraulique des feuilles (gL) dans la partie du couvert exposée au soleil, le flux de sève xylémique (Js) et le potentiel hydrique foliaire (potentiel de base (ψpd) et potentiel minimum (ψnoon)) d’arbres adultes en peuplement mixte et nous les avons reliés aux fluctuations du déficit de pression de vapeur (D) et à l’humidité du sol.• gL maximum était particulièrement élevée chez F. excelsior, C. betulus et T. cordata et a révélé une plus grande sensibilité à D. ψpd est resté constamment élevé chez A. pseudoplatanus, C. betulus et F. excelsior, mais a diminué chez T. cordata et F. sylvatica lorsque l’humidité du sol diminuait.• Jsd a diminué linéairement avec le potentiel matriciel du sol pour toutes les espèces excepté F. excelsior. La conductivité hydraulique apparente du trajet sol-feuille (Lc) était plus élevée chez A. pseudoplatanus que dans les autres espèces.• F. sylvatica a maintenu une faible gL maximum et a réduit sensiblement Jsd face à la sécheresse, mais a connu de graves diminutions de ψpd et ψnoon. F. excelsior présentait une stratégie opposée avec une gL maximum élevée et un ψpd stable.• La sensibilité des espèces à la sécheresse augmente selon la séquence F. excelsior < C. betulus < T. cordata < A. pseudoplatanus < F. sylvatica.

[1]  H. Ellenberg Vegetation Mitteleuropas mit den Alpen : in ökologischer ,dynamischer und historischer Sicht , 2010 .

[2]  D. Hertel,et al.  Root Growth and Recovery in Temperate Broad-Leaved Forest Stands Differing in Tree Species Diversity , 2009, Ecosystems.

[3]  C. Leuschner,et al.  Acidity, nutrient stocks, and organic‐matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.) , 2009 .

[4]  A. Raschi,et al.  Water Transport in Plants under Climatic Stress , 2009 .

[5]  C. Meinen Fine root dynamics in broad-leaved deciduous forest stands differing in tree species diversity , 2008 .

[6]  C. Leuschner,et al.  Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species. , 2008, Tree physiology.

[7]  A. Bolte,et al.  The north-eastern distribution range of European beech—a review , 2007 .

[8]  C. Körner,et al.  Stomatal conductance in mature deciduous forest trees exposed to elevated CO2 , 2007, Trees.

[9]  P. Kupper,et al.  Effects of enhanced hydraulic supply for foliage on stomatal responses in little-leaf linden (Tilia cordata Mill.) , 2007, European Journal of Forest Research.

[10]  N. Breda,et al.  Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences , 2006 .

[11]  A. Frech Walddynamik in Mischwäldern des Nationalparks Hainich , 2006 .

[12]  C. Körner,et al.  Stomatal conductance in mature deciduous forest trees exposed to elevated CO2 , 2006, Trees.

[13]  C. Körner,et al.  Responses of deciduous forest trees to severe drought in Central Europe. , 2005, Tree physiology.

[14]  C. Leuschner,et al.  Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal soil drought , 2005, Trees.

[15]  H. Schmid,et al.  Environmental controls on sap flow in a northern hardwood forest. , 2005, Tree physiology.

[16]  S. Korn Experimentelle Untersuchung der Wasseraufnahme und der hydraulischen Eigenschaften des Wurzelsystems von sechs heimischen Baumarten , 2004 .

[17]  G. Meehl,et al.  More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century , 2004, Science.

[18]  R. Lösch,et al.  Xylem sap flow and drought stress of Fraxinus excelsior saplings. , 2004, Tree physiology.

[19]  D. Lüthi,et al.  The role of increasing temperature variability in European summer heatwaves , 2004, Nature.

[20]  Jon D. Johnson,et al.  The response of European beech (Fagus sylvatica L.) seedlings from two Italian populations to drought and recovery , 1995, Trees.

[21]  M. Marek,et al.  Stand microclimate and physiological activity of tree leaves in an oak-hornbeam forest , 1989, Trees.

[22]  M. Marek,et al.  Stand microclimate and physiological activity of tree leaves in an oak-hornbeam forest , 1989, Trees.

[23]  M. Hipkins,et al.  Maximum sustainable xylem sap tensions in Rhododendron and other species , 2004, Planta.

[24]  Florian Schipka Blattwasserzustand und Wasserumsatz von vier Buchenwäldern entlang eines Niederschlagsgradienten in Mitteldeutschland , 2003 .

[25]  R. Oren,et al.  Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest , 2003 .

[26]  Ü. Niinemets,et al.  Drought acclimation of two deciduous tree species of different layers in a temperate forest canopy , 2003, Trees.

[27]  R. Oren,et al.  Water deficits and hydraulic limits to leaf water supply. , 2002, Plant, cell & environment.

[28]  A. Granier,et al.  Within crown variation in hydraulic architecture in beech (Fagus sylvatica) L): evidence for a stomatal control of xylem embolism , 2002 .

[29]  F. Meinzer Functional convergence in plant responses to the environment , 2002, Oecologia.

[30]  D. Lemoine,et al.  Comparative studies of the water relations and the hydraulic characteristics in Fraxinus excelsior, Acer pseudoplatanus and A. opalus trees under soil water contrasted conditions , 2001 .

[31]  A. Nardini,et al.  Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? , 2000, Trees.

[32]  G. Pautou,et al.  Success in the demographic expansion of Fraxinus excelsior L. , 2000, Trees.

[33]  W. Smith,et al.  SAP FLUX OF CO-OCCURRING SPECIES IN A WESTERN SUBALPINE FOREST DURING SEASONAL SOIL DROUGHT , 2000 .

[34]  J. Sperry Hydraulic constraints on plant gas exchange , 2000 .

[35]  I. Aranda,et al.  Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe , 2000, Trees.

[36]  C. Leuschner,et al.  Leaf water relations of competitive Fagus sylvatica and Quercus petraea trees during 4 years differing in soil drought , 2000 .

[37]  Nathan Phillips,et al.  Survey and synthesis of intra‐ and interspecific variation in stomatal sensitivity to vapour pressure deficit , 1999 .

[38]  R. Oren,et al.  Temporal patterns of water flux in trees and lianas in a Panamanian moist forest , 1999, Trees.

[39]  Frederick C. Meinzer,et al.  Potential errors in measurement of nonuniform sap flow using heat dissipation probes. , 1999, Tree physiology.

[40]  John Tenhunen,et al.  Apparent Controls on Leaf Conductance by Soil Water Availability and via Light‐Acclimation of Foliage Structural and Physiological Properties in a Mixed Deciduous, Temperate Forest , 1999, International Journal of Plant Sciences.

[41]  M. Schaap,et al.  Neural network analysis for hierarchical prediction of soil hydraulic properties , 1998 .

[42]  Hervé Cochard,et al.  Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinus excelsior L.: impacts on water relations , 1997 .

[43]  R. Bligny,et al.  Osmotic adjustment in Fraxinus excelsior L . : malate and mannitol accumulation in leaves under drought conditions , 1997, Trees.

[44]  R. Huc,et al.  Transpiration of natural rain forest and its dependence on climatic factors , 1996 .

[45]  Hervé Cochard,et al.  Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? , 1996 .

[46]  U. Hacke,et al.  Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera , 1995 .

[47]  Federico Magnani,et al.  Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica , 1995 .

[48]  Ernst-Detlef Schulze,et al.  Ecophysiology of Photosynthesis , 1995, Springer Study Edition.

[49]  C. Körner,et al.  Leaf Diffusive Conductances in the Major Vegetation Types of the Globe , 1995 .

[50]  P. Rosier,et al.  Comparative estimates of transpiration of ash and beech forest at a chalk site in southern Britain , 1994 .

[51]  C. Pigott,et al.  Water as a determinant of the distribution of trees at the boundary of the Mediterranean zone. , 1993 .

[52]  A. Granier,et al.  Water Transport in Plants under Climatic Stress: Environmental control of water flux through Maritime pine ( Pinus pinaster Ait). , 1993 .

[53]  G. Carlier,et al.  Comportement hydrique du frêne (Fraxinus excelsior L) dans une formation montagnarde mésoxérophile , 1992 .

[54]  A. Granier,et al.  Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. , 1987, Tree physiology.