The effect of emergent macrophytes on the dynamics of sulfur species and trace metals in wetland sediments.

[1]  J. Boulègue,et al.  Sulfur speciation and associated trace metals (Fe, Cu) in the pore waters of Great Marsh, Delaware , 1982 .

[2]  B. Bostick,et al.  Seasonal fluctuations in zinc speciation within a contaminated wetland. , 2001, Environmental science & technology.

[3]  D. Capone,et al.  Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism1 , 1988 .

[4]  W. H. Patrick,et al.  Nitrification‐denitrification at the plant root‐sediment interface in wetlands , 1989 .

[5]  K. Scott,et al.  TOXICITY OF CADMIUM IN SEDIMENTS: THE ROLE OF ACID VOLATILE SULFIDE , 1990 .

[6]  B. Sorrell Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions , 1999 .

[7]  R. Carignan,et al.  Geochemistry of trace metals associated with reduced sulfur in freshwater sediments , 1998 .

[8]  B. Tebo,et al.  The Behavior of Trace Metals in Marine Anoxic Waters: Solubilities at the Oxygen-Hydrogen Sulfide Interface , 1983 .

[9]  B. Jørgensen,et al.  Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO42− reduction measurements , 1984 .

[10]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[11]  P. Jaffé,et al.  Effects of plants on the removal of hexavalent chromium in wetland sediments. , 2006, Journal of environmental quality.

[12]  J. Pokorný,et al.  Rhizosphere oxygenation by Typha domingensis Pers. in miniature artificial wetland filters used for metal removal from wastewaters , 1988 .

[13]  K. Liber,et al.  Dialysis minipeeper for measuring pore‐water metal concentrations in laboratory sediment toxicity and bioavailability tests , 2000 .

[14]  P. Brezonik,et al.  Sulfate reduction and diffusion in sediments of Little Rock Lake, Wisconsin , 1994 .

[15]  R. Hellmann,et al.  Water-rock interactions, ore deposits, and environmental geochemistry : a tribute to David A. Crerar , 2002 .

[16]  J. D. Burton,et al.  Trace Metals in Sea Water , 1983 .

[17]  S. Simpson,et al.  Effect of Short-Term Resuspension Events on Trace Metal Speciation in Polluted Anoxic Sediments , 1998 .

[18]  L. D. Moore,et al.  Factors Affecting Root Exudation Ii: 1970–1978 , 1980 .

[19]  I. Makhadmeh,et al.  Ecophysiology of the plant-rhizosphere system , 2001 .

[20]  P. Jaffé,et al.  Uptake of bromide by two wetland plants (Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud). , 2004, Environmental science & technology.

[21]  G. Blair,et al.  Release of Sulfur from Rice Residues under Flooded and Non-Flooded Soil Conditions , 1994 .

[22]  J. Middelburg,et al.  Effects of two common macrophytes on methane dynamics in freshwater sediments , 1998 .

[23]  R. Hesslein An in situ sampler for close interval pore water studies1 , 1976 .

[24]  Stuart L. Simpson,et al.  Effect of Short-Term Resuspension Events on the Oxidation of Cadmium, Lead, and Zinc Sulfide Phases in Anoxic Estuarine Sediments , 2000 .

[25]  Adrian M. Gonzalez Oxidation chemistry of acid‐volatile sulfide during analysis , 2002, Environmental toxicology and chemistry.

[26]  R. Mandelbaum,et al.  Method forin SituStudy of Bacterial Activity in Aquifers , 1996 .

[27]  G. Ankley,et al.  Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments , 1992 .

[28]  J. Chanton,et al.  3 – Effects of Vegetation on Methane Flux, Reservoirs, and Carbon Isotopic Composition , 1991 .

[29]  W. Armstrong Aeration in Higher Plants , 1980 .

[30]  R. Conrad,et al.  Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate‐reducing bacteria in planted and unplanted paddy soil , 1995 .

[31]  J. Dacey Internal winds in water lilies: an adaptation for life in anaerobic sediments. , 1980, Science.

[32]  R. Carignan Interstitial water sampling by dialysis: Methodological notes , 1984 .

[33]  H. Mooney,et al.  Trace Gas Emissions by Plants , 1991 .

[34]  W. Armstrong,et al.  Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. , 1990, The New phytologist.

[35]  L. Balistrieri,et al.  Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean , 1981 .

[36]  D. D. Toro,et al.  Particle oxidation model of synthetic FeS and sediment acid‐volatile sulfide , 1996 .