Effect of microwave power on bactericidal and UV protection properties of the ZnO nanorods grown cotton fabrics

[1]  S. Rahbarpour,et al.  Investigating Organic Vapor Sensing Properties of Composite Carbon Nanotube-Zinc Oxide Nanowire , 2022, Chemosensors.

[2]  I. Iatsunskyi,et al.  ZnO size and shape effect on antibacterial activity and cytotoxicity profile , 2022, Scientific Reports.

[3]  Rosario Tavera-Hernández,et al.  Influence of the particle size on the antibacterial activity of green synthesized zinc oxide nanoparticles using Dysphania ambrosioides extract, supported by molecular docking analysis , 2022, Arabian Journal of Chemistry.

[4]  E. Mijowska,et al.  The cellulose fibers functionalized with star-like zinc oxide nanoparticles with boosted antibacterial performance for hygienic products , 2022, Scientific Reports.

[5]  P. R. M. Lopes,et al.  Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens , 2021, Scientific Reports.

[6]  Asif Javed,et al.  Ultra-Fast Growth of ZnO Nanorods on Cotton Fabrics and Their Self-Cleaning and Physiological Comfort Properties , 2021, Coatings.

[7]  A. Serrà,et al.  Recent progress in the electrochemical deposition of ZnO nanowires: synthesis approaches and applications , 2021, Critical Reviews in Solid State and Materials Sciences.

[8]  B. S. Boroujeny,et al.  Effect of substrate surface treatment on the hydrothermal synthesis of zinc oxide nanostructures , 2021, Ceramics International.

[9]  Y. Seo,et al.  Engineering-safer-by design ZnO nanoparticles incorporated cellulose nanofiber hybrid for high UV protection and low photocatalytic activity with mechanism , 2021 .

[10]  Yuanjian Xie,et al.  Cellulose-based antimicrobial films incroporated with ZnO nanopillars on surface as biodegradable and antimicrobial packaging. , 2021, Food chemistry.

[11]  Naser Tamimi,et al.  The effects of nano‐zinc oxide morphology on functional and antibacterial properties of tapioca starch bionanocomposite , 2021, Food science & nutrition.

[12]  F. Plou,et al.  The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies , 2021, International journal of molecular sciences.

[13]  M. El-Naggar,et al.  Wound dressing properties of functionalized environmentally biopolymer loaded with selenium nanoparticles , 2021 .

[14]  J. Militký,et al.  Development of durable superhydrophobic and UV protective cotton fabric via TiO2/trimethoxy(octadecyl)silane nanocomposite coating , 2020, The Journal of The Textile Institute.

[15]  L. Voleský,et al.  Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: effect of size and shape of nanorods on superhydrophobic and UV-blocking properties , 2020, Cellulose.

[16]  Agnieszka Czyżowska,et al.  A review: zinc oxide nanoparticles – friends or enemies? , 2020, International journal of environmental health research.

[17]  Y. Ghasemi,et al.  Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV Blocker and Antimicrobial Agent , 2020, Nanomaterials.

[18]  Fujun Xu,et al.  Surface Functionalization of Cotton and PC Fabrics Using SiO2 and ZnO Nanoparticles for Durable Flame Retardant Properties , 2020, Coatings.

[19]  C. Gaillard,et al.  Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation , 2020, Nanomaterials.

[20]  B. G. Chiari-Andréo,et al.  Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: An Overview , 2019, International journal of nanomedicine.

[21]  J. Navarro,et al.  Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. , 2019, International journal of biological macromolecules.

[22]  B. Simončič,et al.  Zinc Oxide for Functional Textile Coatings: Recent Advances , 2019, Coatings.

[23]  G. Cai,et al.  Hydrothermal growing of cluster-like ZnO nanoparticles without crystal seeding on PET films via dopamine anchor , 2019, Applied Surface Science.

[24]  J. Militký,et al.  Superhydrophobicity, UV protection and oil/water separation properties of fly ash/Trimethoxy(octadecyl)silane coated cotton fabrics. , 2018, Carbohydrate polymers.

[25]  M. Goyal Shape, size and phonon scattering effect on the thermal conductivity of nanostructures , 2018, Pramana.

[26]  M. Öveçoğlu,et al.  Surface modification and characterization of polyester fabric by coating with low temperature synthesized ZnO nanorods , 2018, Journal of Sol-Gel Science and Technology.

[27]  T. Hussain,et al.  Development of UV Protective, Superhydrophobic and Antibacterial Textiles Using ZnO and TiO2 Nanoparticles , 2018, Fibers and Polymers.

[28]  S. Hamdy,et al.  Green surface modification and nano-multifunctionalization of denim fabric , 2018, Cellulose.

[29]  M. Chipara,et al.  Hierarchical and Complex ZnO Nanostructures by Microwave-Assisted Synthesis: Morphologies, Growth Mechanism and Classification , 2018 .

[30]  Jie Chen,et al.  Thermal conductivity of nanowires , 2018 .

[31]  Jiaguo Yu,et al.  Review on the improvement of the photocatalytic and antibacterial activities of ZnO , 2017 .

[32]  H. Sodano,et al.  Role of ZnO nanowire arrays on the impact response of aramid fabrics , 2017 .

[33]  J. Archana,et al.  Fabrication of hierarchical ZnO nanostructures on cotton fabric for wearable device applications , 2017 .

[34]  H. Hilal,et al.  ZnO nanoparticles in complete photo-mineralization of aqueous gram negative bacteria and their organic content with direct solar light , 2017 .

[35]  Hwan Myung Kim,et al.  Antibacterial mechanism of ZnO nanoparticles under dark conditions , 2017 .

[36]  Hyung‐Ho Park,et al.  Impact of nanostructured thin ZnO film in ultraviolet protection , 2016, International journal of nanomedicine.

[37]  Tejabhiram Yadavalli,et al.  Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. , 2017, Nanomedicine : nanotechnology, biology, and medicine.

[38]  R. M. Fernández-Domene,et al.  Photoelectrochemical characterization of anatase-rutile mixed TiO2 nanosponges , 2016 .

[39]  A. Perwuelz,et al.  Study the multi self-cleaning characteristics of ZnO nanorods functionalized polyester fabric , 2016 .

[40]  Jicheng Zhou,et al.  A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions , 2016, Scientific Reports.

[41]  A. U. H. S. Rana,et al.  Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage , 2016, Scientific Reports.

[42]  T. Kang,et al.  Thermal Conductivity of ZnO Single Nanowire. , 2016, Journal of nanoscience and nanotechnology.

[43]  J. Zarzyńska,et al.  Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach , 2015, Nanoscale Research Letters.

[44]  Z. A. Raza,et al.  In situ deposition of TiO2 nanoparticles on polyester fabric and study of its functional properties , 2015, Fibers and Polymers.

[45]  H. Hasan,et al.  Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism , 2015, Nano-micro letters.

[46]  J. Zarzyńska,et al.  Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties , 2015, Nanoscale Research Letters.

[47]  T. Thongtem,et al.  Effect of microwave power on energy gap of ZnO nanoparticles synthesized by microwaving through aqueous solutions , 2015 .

[48]  M. Aliofkhazraei,et al.  Microwave-assisted Synthesis of Zinc Oxide Nanoparticles , 2015 .

[49]  D. Late,et al.  Antimicrobial Activity of ZnO Nanoparticles against Pathogenic Bacteria and Fungi , 2015 .

[50]  F. Ko,et al.  Study on synthesis of ZnO nanorods and its UV-blocking properties on cotton fabrics coated with the ZnO quantum dot , 2014, Journal of Nanoparticle Research.

[51]  A. Perwuelz,et al.  Development of Antibacterial Polyester Fabric by Growth of ZnO Nanorods , 2014 .

[52]  Angelo Vaccari,et al.  TiO2 based photocatalytic coatings: From nanostructure to functional properties , 2013 .

[53]  M. Salleh,et al.  Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process , 2013 .

[54]  Morteza Mahmoudi,et al.  Antibacterial properties of nanoparticles. , 2012, Trends in biotechnology.

[55]  M. Sundrarajan,et al.  Antibacterial effect of novel synthesized sulfated β-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. , 2012, International journal of pharmaceutics.

[56]  Thomas J Webster,et al.  Antimicrobial applications of nanotechnology: methods and literature , 2012, International journal of nanomedicine.

[57]  P. Agin,et al.  Effects of Solar Radiation on the Skin , 2012, Journal of cosmetic dermatology.

[58]  Husnu Emrah Unalan,et al.  Zinc oxide nanowire enhanced multifunctional coatings for cotton fabrics , 2012 .

[59]  S. K. Sadrnezhaad,et al.  Effects of initial precursor and microwave irradiation on step-by-step synthesis of zinc oxide nano-architectures , 2012 .

[60]  Antoni W. Morawski,et al.  The application of titanium dioxide for deactivation of bioparticulates: An overview , 2011 .

[61]  M. A. Zanjanchi,et al.  Synthesis and Characterization of Nano-sized Zinc Oxide Coating on Cellulosic Fibers: Photoactivity and Flame-retardancy Study , 2011 .

[62]  A. R. Daud,et al.  Effect of microwave power on the morphology and optical property of zinc oxide nano-structures prepared via a microwave-assisted aqueous solution method , 2011 .

[63]  T. Ebadzadeh,et al.  Effect of concentration and heating conditions on microwave-assisted hydrothermal synthesis of ZnO nanorods , 2010 .

[64]  M. Arai,et al.  Microwave-assisted additive free synthesis of nanocrystalline zinc oxide , 2010 .

[65]  S. Jayakumar,et al.  Use of zinc oxide nano particles for production of antimicrobial textiles , 2010 .

[66]  Majid Montazer,et al.  A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. , 2010, Colloids and surfaces. B, Biointerfaces.

[67]  Sanjaya Brahma,et al.  Rapid growth of nanotubes and nanorods of würtzite ZnO through microwave-irradiation of a metalorganic complex of zinc and a surfactant in solution , 2010 .

[68]  S. Zanganeh,et al.  Microwave-assisted synthesis of narcis-like zinc oxide nanostructures , 2010 .

[69]  Yaping Zhao,et al.  Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method , 2010 .

[70]  Young-soon Kim,et al.  Fabrication and growth mechanism of hexagonal zinc oxide nanorods via solution process , 2010 .

[71]  D. Sviridov,et al.  Photocatalysts for reagentless disinfection on the basis of titanium dioxide films modified by silver nanoparticles , 2009 .

[72]  Zhiping Mao,et al.  The formation and UV-blocking property of needle-shaped ZnO nanorod on cotton fabric , 2009 .

[73]  G. Guebitz,et al.  Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. , 2009, ACS applied materials & interfaces.

[74]  Chao Liu,et al.  Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition , 2009, Journal of applied toxicology : JAT.

[75]  Supakorn Pukird,et al.  Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method , 2008 .

[76]  G. Amaratunga,et al.  Rapid synthesis of aligned zinc oxide nanowires , 2008, Nanotechnology.

[77]  Z. Cai,et al.  Trial‐manufacture and UV‐blocking property of ZnO nanorods on cotton fabrics , 2008 .

[78]  Jianfeng Huang,et al.  Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology , 2008 .

[79]  P. Baglioni,et al.  Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers , 2008 .

[80]  Kwan Kim,et al.  A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. , 2007, Chemical communications.

[81]  N. Vigneshwaran,et al.  Functional finishing in cotton fabrics using zinc oxide nanoparticles , 2006 .

[82]  Cwm Yuen,et al.  SELECTED APPLICATIONS OF NANOTECHNOLOGY IN TEXTILES , 2006 .

[83]  Xianluo Hu,et al.  Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods , 2004 .

[84]  Ying-Jie Zhu,et al.  Shape-controlled synthesis of zinc oxide by microwave heating using an imidazolium salt , 2004 .