Electron mobilities in gallium, indium, and aluminum nitrides

Electron mobilities in GaN and InN are calculated, by variational principle, as a function of temperature for carrier concentrations of 1016, 1017, and 1018 cm−3 with compensation ratio as a parameter. Both GaN and InN have maximum mobilities between 100 and 200 K, depending on the electron density and compensation ratio, with lower electron density peaking at lower temperature. This is due to the interplay of piezoelectric acoustic phonon scattering at low carrier concentrations and ionized impurity scattering at higher carrier concentrations. Above 200 K, polar mode optical phonon scattering is the mobility limiting process. The 300 and 77 K electron and Hall mobilities as functions of carrier concentration in the range of 1016–1020 cm−3 and compensation ratio are also calculated. The theoretical maximum mobilities in GaN and InN at 300 K are about 1000 and 4400 cm2 V−1 s−1, respectively, while at 77 K the limits are beyond 6000 and 30 000 cm2 V−1 s−1, respectively. We compare the results with experimental data and find reasonable correlation, but with evidence that structural imperfection and heavy compensation play important roles in the material presently available. Only phonon limited scattering processes are considered in the calculation of the mobility in AlN since it is an insulator of extremely low carrier concentration. We find a phonon limited electron mobility of about 300 cm2 V−1 s−1 at 300 K.

[1]  T. Osotchan,et al.  Hall and drift mobilities in molecular beam epitaxial grown GaAs , 1993 .

[2]  M. Shur,et al.  Monte Carlo simulation of electron transport in gallium nitride , 1993 .

[3]  R. Egan,et al.  Defects, optical absorption and electron mobility in indium and gallium nitrides , 1993 .

[4]  T. Moustakas,et al.  Electron transport mechanism in gallium nitride , 1993 .

[5]  T. Osotchan,et al.  On the calculation of electron mobility in In0.53Ga0.47As , 1992 .

[6]  H. Morkoç,et al.  GaN, AlN, and InN: A review , 1992 .

[7]  V. Chin The effect of carrier densities and compensation ratios on the electron mobility of InAsxP1-x , 1992 .

[8]  Shuji Nakamura,et al.  In situ monitoring and Hall measurements of GaN grown with GaN buffer layers , 1992 .

[9]  Egan,et al.  Point-defect energies in the nitrides of aluminum, gallium, and indium. , 1992, Physical review. B, Condensed matter.

[10]  Chan,et al.  First-principles total-energy calculation of gallium nitride. , 1992, Physical review. B, Condensed matter.

[11]  Shuji Nakamura,et al.  GaN Growth Using GaN Buffer Layer , 1991 .

[12]  Jeremiah R. Lowney,et al.  Majority and minority electron and hole mobilities in heavily doped GaAs , 1991 .

[13]  R. Davis III-V nitrides for electronic and optoelectronic applications , 1991, Proc. IEEE.

[14]  R. M. Kolbas,et al.  Growth of high optical and electrical quality GaN layers using low‐pressure metalorganic chemical vapor deposition , 1991 .

[15]  J. M. Chamberlain,et al.  Electrical characterization of molecular beam epitaxial GaAs with peak electron mobilities up to ≊4×105 cm2 V−1 s−1 , 1991 .

[16]  T. Tansley,et al.  LASER-INDUCED CHEMICAL VAPOR DEPOSITION OF ALN FILMS , 1990 .

[17]  H. Amano,et al.  P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) , 1989 .

[18]  Isamu Akasaki,et al.  Effects of ain buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0 < x ≦ 0.4) films grown on sapphire substrate by MOVPE , 1989 .

[19]  Jenkins,et al.  Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN. , 1989, Physical review. B, Condensed matter.

[20]  C. M. Wolfe,et al.  Physical Properties of Semiconductors , 1989 .

[21]  R. Egan,et al.  Properties of sputtered nitride semiconductors , 1988 .

[22]  H. Amano,et al.  Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate , 1988 .

[23]  A. Adams,et al.  Reassessment of ionized impurity scattering and compensation in GaAs and InP including correlation scattering , 1987 .

[24]  Cao Huazhe,et al.  On the properties of AlN thin films grown by low temperature reactive r.f. sputtering , 1986 .

[25]  Tansley,et al.  Pseudopotential band structure of indium nitride. , 1986, Physical review. B, Condensed matter.

[26]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[27]  C. Foley,et al.  Electron mobility in indium nitride , 1984 .

[28]  S. Misawa,et al.  Optical properties of AlN epitaxial thin films in the vacuum ultraviolet region , 1979 .

[29]  Michael A. Littlejohn,et al.  Monte Carlo calculation of the velocity‐field relationship for gallium nitride , 1975 .

[30]  Marc Ilegems,et al.  Electrical properties of n-type vapor-grown gallium nitride , 1973 .

[31]  A. Shaw,et al.  Quantum Transport Theory of Impurity-Scattering-Limited Mobility in n-Type Semiconductors Including Electron-Electron Scattering , 1971 .

[32]  Marc Ilegems,et al.  Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers , 1971 .

[33]  R. F. Leheny,et al.  Stimulated Emission and Laser Action in Gallium Nitride , 1971 .

[34]  J. J. Tietjen,et al.  THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN , 1969 .

[35]  Van Vechten,et al.  Quantum Dielectric Theory of Electronegativity in Covalent Systems. I. Electronic Dielectric Constant , 1969 .

[36]  J. C. Phillips Dielectric Definition of Electronegativity , 1968 .

[37]  R. H. Tredgold,et al.  On the preparation, optical properties and electrical behaviour of aluminium nitride , 1967 .

[38]  J. Zook Piezoelectric Scattering in Semiconductors , 1964 .

[39]  J. Appel INTERBAND ELECTRON-ELECTRON SCATTERING AND TRANSPORT PHENOMENA IN SEMICONDUCTORS , 1962 .

[40]  H. G. Grimmeiss,et al.  Lumineszenz- und Photoleitungseigenschaften von dotiertem GaN , 1960 .

[41]  J. R. Gliessman,et al.  The Resistivity and Hall Effect of Germanium at Low Temperatures , 1950 .

[42]  H. Amano,et al.  Growth of single crystal GaN substrate using hydride vapor phase epitaxy , 1990 .

[43]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[44]  H. Bennett,et al.  Effect of donor impurities on the conduction and valence bands of silicon , 1982 .