Kernel Classification Methods for Cancer Microarray Data

[1]  Masashi Sugiyama,et al.  Conic Programming for Multitask Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[2]  Masashi Sugiyama,et al.  A Transfer Learning Approach and Selective Integration of Multiple Types of Assays for Biological Network Inference , 2010, Int. J. Knowl. Discov. Bioinform..

[3]  Masashi Sugiyama,et al.  Recent Advances and Trends in Large-Scale Kernel Methods , 2009, IEICE Trans. Inf. Syst..

[4]  Jeffrey M. Rosen,et al.  The Increasing Complexity of the Cancer Stem Cell Paradigm , 2009, Science.

[5]  Masashi Sugiyama,et al.  Robust Label Propagation on Multiple Networks , 2009, IEEE Transactions on Neural Networks.

[6]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[7]  Tsuyoshi Kato,et al.  Classification of heterogeneous microarray data by maximum entropy kernel , 2007, BMC Bioinformatics.

[8]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[9]  B. Nilsson,et al.  Cross-platform classification in microarray-based leukemia diagnostics. , 2006, Haematologica.

[10]  Roland Eils,et al.  Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes , 2005, BMC Bioinformatics.

[11]  Huiqing Liu,et al.  Use of extreme patient samples for outcome prediction from gene expression data , 2005, Bioinform..

[12]  Sunil Singhal,et al.  Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity , 2005, Oncogene.

[13]  Dennis B. Troup,et al.  NCBI GEO: mining millions of expression profiles—database and tools , 2004, Nucleic Acids Res..

[14]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[15]  Patricia Soteropoulos,et al.  Association between gene expression profile and tumor invasion in oral squamous cell carcinoma. , 2004, Cancer genetics and cytogenetics.

[16]  Tatsuya Akutsu,et al.  Protein homology detection using string alignment kernels , 2004, Bioinform..

[17]  P. Brown,et al.  Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  William Stafford Noble,et al.  Learning kernels from biological networks by maximizing entropy , 2004, ISMB/ECCB.

[19]  T. Barrette,et al.  ONCOMINE: a cancer microarray database and integrated data-mining platform. , 2004, Neoplasia.

[20]  Yusuke Nakamura,et al.  Prediction of chemosensitivity for patients with acute myeloid leukemia, according to expression levels of 28 genes selected by genome-wide complementary DNA microarray analysis. , 2002, Molecular cancer therapeutics.

[21]  Bernhard Schölkopf,et al.  A Kernel Approach for Learning from Almost Orthogonal Patterns , 2002, PKDD.

[22]  Chih-Jen Lin,et al.  Training v-Support Vector Regression: Theory and Algorithms , 2002, Neural Computation.

[23]  Kiyoshi Asai,et al.  Marginalized kernels for biological sequences , 2002, ISMB.

[24]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[25]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Mesirov,et al.  Chemosensitivity prediction by transcriptional profiling , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[28]  Nello Cristianini,et al.  Classification using String Kernels , 2000 .

[29]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[30]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[31]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[32]  C. Berg,et al.  Harmonic Analysis on Semigroups , 1984 .