Oxygen electrode reaction on Nd2NiO4+δ cathode materials: impedance spectroscopy study

Abstract The oxygen reduction at the surface of Nd2NiO4+δ mixed conducting cathodes has been studied in the temperature range 400–1100 K using two kinds of cells: (i) porous cathodes deposited on a standard electrolyte pellet of yttria-stabilized zirconia (YSZ) and (ii) YSZ films sputtered on dense pellets of Nd2NiO4+δ. The studies on dense cathodes allowed to determine their electrical conductivity characteristics independently of their microstructure. The performances of these cathode materials were measured using the complex impedance spectroscopy at various temperatures and oxygen partial pressures. Compared to manganite perovskites, porous electrodes of these oxides exhibit promising electrocatalytic properties (i.e. lower polarization resistances) in agreement with the values of the surface exchange coefficient, k, and of the oxygen tracer diffusion coefficient, D*, previously measured by SIMS. Their behavior, especially the dependence of the polarization resistance on temperature and oxygen partial pressure was tentatively modelled.

[1]  H. Tagawa,et al.  Kinetic studies on the reaction at the La0.6Ca0.4MnO3/YSZ interface, as an SOFC air electrode , 1989 .

[2]  Koji Amano,et al.  Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part I: Theoretical consideration of reaction model , 1987 .

[3]  Y. Takeda,et al.  Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia , 1987 .

[4]  F. Thévenot,et al.  Densification of Yttria‐Stabilized Zirconia Impedance Spectroscopy Analysis , 1997 .

[5]  J. Winkler,et al.  Geometric Requirements of Solid Electrolyte Cells with a Reference Electrode , 1998 .

[6]  S. Barnett,et al.  Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study , 1998 .

[7]  Junichiro Mizusaki,et al.  A Chemical Diffusion‐Controlled Electrode Reaction at the Compact La1 − x Sr x MnO3/Stabilized Zirconia Interface in Oxygen Atmospheres , 1996 .

[8]  Arthur H. Heuer,et al.  Science and Technology of Zirconia , 1981 .

[9]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[10]  A. Hammouche,et al.  Impedance spectroscopy analysis of La1 − xSritxMnO3-yttria-stabilized zirconia electrode kinetics , 1995 .

[11]  A. Jacobson,et al.  Impedance studies of oxygen exchange on dense thin film electrodes of La0.5Sr0.5CoO3-δ , 2000 .

[12]  S. J. Rothman,et al.  Effect of dopant size on the ionic conductivity of cubic stabilised ZrO2 , 1989 .

[13]  E. Djurado,et al.  Low-temperature oxygen electrode reaction on bismuth ruthenium oxides/stabilized zirconia , 1998 .

[14]  J. Kilner,et al.  Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ , 2000 .

[15]  E. Ivers-Tiffée,et al.  Materials and technologies for SOFC-components , 2001 .

[16]  A. West,et al.  The AC Impedance Response of the Physical Interface Between Yttria‐Stabilized Zirconia and YBa2Cu3 O 7 − x , 1995 .

[17]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part I. Oxygen tracer diffusion , 1998 .

[18]  Junichiro Mizusaki,et al.  Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode La0.6Ca0.4MnO3 / YSZ , 1991 .

[19]  Harry L. Tuller,et al.  Ionic conduction in nanocrystalline materials , 2000 .

[20]  B. Steele Behaviour of porous cathodes in high temperature fuel cells , 1997 .

[21]  Wagner,et al.  Structure of the superconducting La2CuO4+ delta phases ( delta , 1993, Physical review. B, Condensed matter.

[22]  Mogens Bjerg Mogensen,et al.  Characterisation of composite SOFC cathodes using electrochemical impedance spectroscopy , 1999 .