Economic control chart policies for monitoring variables

In this paper, we compare the costs of an economically designed CUSUM control chart and a common Shewhart control chart, the X–bar chart for many configurations of parameters. Our results indicate that there are identifiable regions where there is an overwhelming cost advantage to using CUSUM charts. Additionally, we find that there are identifiable regions where an X–bar chart can be employed without any substantial economic disadvantage. Finally, we identify regions where a regular search policy is less costly than a policy of using either a CUSUM or X–bar chart.

[1]  Douglas C. Montgomery,et al.  Economical Quality Control Policies for a Single Cause System , 1981 .

[2]  William H. Woodall,et al.  Weaknesses of The Economic Design of Control Charts , 1986 .

[3]  James M. Lucas,et al.  The Design and Use of V-Mask Control Schemes , 1976 .

[4]  E. S. Pearson,et al.  ON THE USE AND INTERPRETATION OF CERTAIN TEST CRITERIA FOR PURPOSES OF STATISTICAL INFERENCE PART I , 1928 .

[5]  Erwin M. Saniga,et al.  Economic Advantages of CUSUM Control Charts for Variables , 2006 .

[6]  Fah Fatt Gan,et al.  An optimal design of CUSUM quality control charts , 1991 .

[7]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[8]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[9]  Erwin M. Saniga,et al.  Economic Statistical Control-Chart Designs With an Application to and R Charts , 1989 .

[10]  H. M. Taylor The Economic Design of Cumulative Sum Control Charts , 1968 .

[11]  E. S. Pearson,et al.  On the Problem of the Most Efficient Tests of Statistical Hypotheses , 1933 .

[12]  Lonnie C. Vance,et al.  The Economic Design of Control Charts: A Unified Approach , 1986 .

[13]  Douglas C. Montgomery,et al.  Selection of the subgroup size and sampling interval for a CUSUM control chart , 1997 .

[14]  D. Hawkins,et al.  Cumulative Sum Charts and Charting for Quality Improvement , 1998, Statistics for Engineering and Physical Science.

[15]  Marion R. Reynolds,et al.  Control Charts and the Efficient Allocation of Sampling Resources , 2004, Technometrics.

[16]  Douglas M. Hawkins A fast accurate approximation for average run lengths of CUSUM control charts , 1992 .

[17]  William H. Woodall,et al.  The design of CUSUM quality control charts , 1986 .

[18]  W. K. Chiu,et al.  The Economic Design of Cusum Charts for Controlling Normal Means , 1974 .

[19]  James M. Lucas,et al.  Combined Shewhart-CUSUM Quality Control Schemes , 1982 .

[20]  Jerzy Neyman,et al.  The testing of statistical hypotheses in relation to probabilities a priori , 1933, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Alberto Luceño,et al.  Computing the Run Length Probability Distribution for CUSUM Charts , 2002 .

[22]  Thomas P. McWilliams,et al.  Economic, Statistical, and Economic-Statistical X̄ Chart Designs , 1994 .

[23]  Acheson J. Duncan,et al.  The Economic Design of X Charts Used to Maintain Current Control of a Process , 1956 .

[24]  J. Rodriguez,et al.  Problem (1) , 1994 .

[25]  G. Moustakides Optimal stopping times for detecting changes in distributions , 1986 .

[26]  B. F. Arnold,et al.  Economic Process Control , 1987 .